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TESTIMONIALS.

From T. J. Jackson, Professor of Natural and Experimental Philo-

sophy, Virginia Military Institute.

" Froin an examination of various portions of Major D. H. Hill's Algebra, in

manuscript, I regard it as superior to any other work with which I am

acquainted on the same branch of science."

From a Teacher of Mathematics.

" Having also examined several chapters of Major Hill's Algebra, I have no

hesitation in concurring in the above opinion of Professor Jackson."

WILLIAM Mclaughlin.

From J. L. Campbell, Professor of Natural Science, Washington

College, Virginia.

" While I fully concur with Professor Jackson and Mr. McLaughlin in the

opinion they express of Major Hill's Algebra, I will add, that I regard the

method adopted by the author, of incorporating into the work some of the

elementary principles of the Calculus, as giving it peculiar value as a college

text-book."

From William Gilham, Professor of Chemistry and Geology, Virginia

Military Institute, and late Professor at West Point, iV. Y.

" Having read the greater portion of Mnjor Hill's Algebra, I consider it as

better adapted for use as a college text-book than any work on the subject with

which I am acquainted."

From Professor J. A. Leland, late Professor of Mathematics in the

State Military Institute of S. C.

" I have examined with care, many of the proof sheets of Major Hill's Algebra,

and it affords me pleasure to concur in the favorable opinions above expressed."
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IV TESTIMONIALS.

This work of Professor Hill's is the product of a mind intensely in love with

Algebra. It bears the marks of unremitting and intelligent toil. It is exhaus-

tive on the subjects it treats ; and, in the abundance and aptness of its illustra-

tious, reminds one of the richness and simphcity of Euler.

CHARLES PHILLIPS,

Prof. CM Engineering, University, N. C.
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ELEMENTS OF ALGEBRA

Article 1.—A mathematical principle is a truth admitted as self-

evident, or proved by a course of reasoning called a demonstration.

Thus, it is a self-evident principle, that if equals be added to equals,

the results will be equal. But it requires a demonstration to show that

if the sura of two quantities be added to the difference of those quanti-

ties, the result will be equal to twice the greater quantity.

2. Science is knowledge gained by theory or experiment, employed

in the investigation of principles. Art is the application of acquired

principles to the practical purposes of life.

3. Quantity is anything that can be measured or numbered. A
thing is said to be measured when its magnitude is expressed in terms

of the unit of measure, and is said to be numbered when this unit is

unknown or indefinite.

Thus, 12 bushels of corn is a definite measure, the unit of measure

being one bushel of corn. But a quantity, expressed by the number

12, or even by 12 bushels, would only be numbered, for it might be 12

bushels of gold, or 12 of flour, or 12 of anything else.

Lines are quantities, becaiise they can be measured in terms of

yards, feet, inches, &c. Time is quantity, being measured by hours,

minutes, seconds, &c. The unit of measure for time is generally the

second.

The operations of the mind, such as hope, fear, joy, grief, &c., are

not quantities. For, although we speak of a great hope and a small

hope, there is no definite unit of comparison by which to measure its

magnitude.

Numbers are not quantities, but simply the agents by which to

express the abstract relations between quantities of the same kind;

that is to say, every number may be regarded as the quotient arising

2 13



14 ELEMENTS OP ALGEBRA.

from dividing one quantity by another of the same kind, independently

of tlie species to which they belong.

Thus, the number 12 may express the abstract relation between 12

inches and 1 inch, or between 12 months and 1 month; and may, there-

fore, represent the quotient arising from the division of the foot by the

inch, or the year by the month. And so it may express the quotient

between any two quantities whatever, provided they are of the same

kind.

4. Mathematics is the science of quantity.

Arithmetic is that branch of mathematics in which the quantities

considered are represented by numbers.

5. The word Algebra is of Arabic origin, and signifies to consolidate.

Algebra enables us to investigate arithmetical principles in a consoli-

dated, and, at the same time, general manner, and may be regarded as

a compendious, and also universal arithmetic.

6. The quantities considered in Algebra are represented by numbers

and letters, and the operations to be performed are indicated by signs.

The numbers, letters, and signs are generally called symbols.

The numbers and letters that represent quantities are, for conve-

nience, most usually called quantities themselves. The student, how-

ever, should remember that they are only the representatives of

quantities.

7. The sign + is called plus, i. e., more, and when prefixed to a

quantity, signifies that it is to be added to some other quantity expressed

or understood. Thus, a + 6 is read a plus h, and signifies that h is to

be added to a. The expression + c signifies that c is to be added to

some quantity not expressed. When no sign is written before a quan-

tity, the sign -f is always understood. In the expression a -f &, a is

understood to be afiiected with the plus sign.

8. A horizontal line, thus, — is called minus, i. e. less, and when

prefixed to a quantity, signifies that it is to be substracted from some

other quantity, expressed or understood.

Thus, a — 6 is read a minus h, and signifies that h is to be taken

from a. The expression — c signifies that c is to be taken from some

quantity not expressed.

9. A Greek cross x is called the sign of multiplication, and when

placed between quantities, indicates that they are to be multiplied

together. Thus, a X h is read a multiplied by h, or simply a into h,

the sign indicating a multiplication to be performed.
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10 The multiplication of quantities is sometimes indicated by a

point. Thus, a . h indicates that a and h are to be multiplied

together.

11. The multiplication of literal factors is usually indicated by wri-

ting them one after another, thu^ a i c is the same as a X 6 X c. This

notation cannot be employed when numbers are used, for the product

thus expressed would be confounded with some other number. The
multiplication of 2 by 4, for instance, cannot be indicated by writing

the one after the other, because the product would be mistaken for 42

or 24.

12. When several terms connected by the sign +, or —, arc to be

multiplied by a single term, the multiplication is indicated by means

of parentheses. Thus, (a -\- h -{ c) m, signifies that the sum of a, b,

and c is to be multiplied by m. "When the multiplier itself is composed

of more than one term, it is also enclosed in parenthesis: Thus, (a + b)

(m— c) indicates that the sum of a and b is to be multiplied by the

diflFerence of m and c. A horizontal or vertical line is also used to col-

lect terms for multiplication. Thus, a x to + « -f c, indicates that the

sum of m, n, and c is to be multiplied by a. The same thing may be

indicated by a vertical bar, thus

4-TO I

+ n

+ c

13. The coefficient of a quantity is a number or letter prefixed to a

quantity, showing how often it has been added to itself. Thus, instead

of writing a + a -r a, which denotes the addition of a three times, we
abridge the notation by writing 3a. So also, 10.ry, signifies the

addition of xj/ ten times. In like manner, mx signifies the addition

of X, m times. The coefficient serves as a brief mode of indicating the

addition of a quantity to itself. When no coefficient is written, 1 is

always to be understood.

14. The exponent is a small number or letter written a little above

and to the right of a number or letter, and indicates the number of

times it enters into itself as a factor. Thus, we write

a^ instead of aa, and call the result a square.

a^ " " aaa, " " " " a cube.

a* " " aaaa, " " " " a to the fourth power.

The exponent enables us to abbreviate the manner of indicating the
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multiplication of a quantity by itself. When no exponent is wiitten, 1

is always to be understood.

Division is denoted by three signs. The division of a by & may be

indicated hj a-i-h, or —, or a\b.

15. The sign = is called the sign of equality, and is read " equal

to." When placed between two quantities, it indicates that they are

equal to each other. Thus, a = b, is read a equal to b. In like man-

ner, 2 + 4 = 6 is read 2 plus 4 equal to 6.

16. The sign ^ is called the sign of inequality, and is read "greater

than," when the opening is toward the left; and "less than," when

opening is toward the right. Thus, a ^ Z> is read, a greater than b
;

and c <^ m is read, c less than m.

17. A root of a quantity is a quantity which, multiplied by itself a

certain number of times, will produce the given quantity. To indicate

the extraction of a root, we use the sign V , called the radical sign,

placing a number or letter to the left and over the sign to indicate what

root is to be extracted. Thus, ^'a denotes the square root of a;

%/~a the cube root of a ; V~a the i\>'^ root of a.

18. The number or letter placed over the radical sign is called the

index of the radical. When no index is written, we always understand

that the square root is to be extracted. Thus, s/ a means that the

square root of a is to be taken.

19. A simple quantity is one in which the letters and numbers of

which it is composed are not connected by the sign plus or minus.

Thus, a, aZ>, — and c are simple quantities or monomials. All quan-

tities not simple are compound, and called binomials when composed

of two terms; trinomials when composed of three; and polynomials

when composed of more than three. Each of the literal factors which

enter into a term is called a dimension of the term. The degree of a

term is the number of its dimensions. When a factor enters more than

once, its dimension is denoted by the exponent. Thus, a^ is of the

second dimension.

20. When several factors are multiplied together, the sum of the

exponents denotes the dimension of the term. Thus, ab is of the

second dimension, af-bc, of the fourth, aWcd, of the sixth, &c. If

the term is a fraction, its degree is denoted by the difference between
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the sums of the exponents of the numerator and denominator. Thus

is of the second degree, —~ of the first degree, &c.

21. A monomial is said to be liomogcneoxis, ^hen all of its literal

factors are of the same dimension. A polynomial is said to be homo-

geneous, when all its terms arc of the same degree. Thus ah, a?h^,

a!^L^, are each separately homogeneous monomials ; 4a*Z/ -f 2Z/V— m^, is

a homogeneous polynomial.

22. Like quantities are those which are composed of the same letters,

and which have their corresponding letters affected with the same ex-

ponents ; SaP + lOah^— 3a6^ are like quantities. But Sai- -f lOah

— Sa^b'^ are unlike ; for, though the letters are like, the exponents of

these letters are different. p. 17.

23. The reciprocal of a quantity is 1 divided by that quantity. The

.1 1 2 13
reciprocal of 2 is --

; of a, - ; of r o o^ o>
•-'*^'^-

2 a 3 2 2

3

24. Quantities, affected with the plus i?ign, are called iwsitive quanti-

ties, and those affected with the minus sign, are called ncfjative quan-

tities. The student, however, should bear in mind that quantities can-

not be positive or negative in themselves, and that by these phrases, we

wish merely to signify additive and subtractivc quantities.

25. To familiarize the student with the foregoing symbols, we sub-

join a few examples fur practice :
—

1. Express in algebraic language that twice the product of x into y,

divided by t^iree times the product of z into to, shall be equal to G.

2. Express that the sum of a and b, when added to their difference

is equal to twice the greater quantity a.

3. That one-third of a quantity ??i, multiplied by ith of a second

quantity ?), and that product increased by 100, the result will be a hun-

dred thousand.

4. Find the value of this expression, , when b= G-i:, f= 144,
m.n

m=10, n=l.

Find the value of the expression (x a), when m= 4, ?i= 3,

x= 2, a= l.

Find the value of the expression —,-, when 7?i= 4, n= S, c:^=6,
nrii

h= 10, 1= 100.

2* B



18 ADDITION.

ADDITION.

26. Addition is the connecting of several terms together by the

sign plus or minus, so that they nuiy be reduced into a single expres-

sion.

There are three distinct cases :
—

CASE I.

27. When the terms are like and have like signs.

Add the coefficients of the several terms together, prefix the common

sign to this sum, and write after it the common letter or letters, with

their primitive exponents.

Thus, + 2a + 3a are like quantities referred to the same unit, and

may therefore be added, just as two whole numbers are added in Arith-

metic. The -1- 2a indicates that a is to be added twice to some quan-

tity not expressed, and + 3a that a is again to be added three times to

the same quantity. This addition can obviously be indicated at once

by writing + 5a instead of + 2a 4- 3a. Suppose, for example, that a

represented one dollar, then 2a would represent two dollars, and 3a

three dollars, and the sum, five dollars, would, of course, be represented

by 5a. In like manner,— 36— 46 is equal to— 76, because the minus

signs indicate that the quantities represented by 36 and 46 are to be

taken from some quantity not expressed, and subtracting 76 at once is

obviously the same as first subtracting 36 and then subtracting 46. We
may then write — 36— 46 =— 76, the minus sign before the 76 indi-

cating that it is to be taken from some quantity not expressed, and the

whole expression denoting that the subtraction of 76 is the same as the

successive subtraction of 36 and 46. This will be made plainer to the

beginner by attributing to 6 some known value, as a pound or an ounce.
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CASE II.

28, When the quantities are like, but affected with unlike signs.

RULE.

Add the quantities affected tcith the positive siyn hy the last ride, then

add those affected with the negative sign in like manner. Subtract the

smaller of the coefficients of those sums from the greater, annex the

common letter or letters to the difference, and prefix the sign of the

greater sum.

If we were required to add -{- ba— 60 + 4a— a together, we could,

for the reasons already given, write + 9a for the positive terms, and 7a

for the negative terms. By this, we must understand that 9a has to be

added to some quantity not expressed, and that 7a has to be subtracted

from the sum of 9a, and this unexpressed quantity. Now to take 7a

from 9a, and add the remainder to the unexpressed quantity is plainly

the same as taking 7a from the sum of 9a, and the unexpressed quan-

tity. But the difference between 9a and 7a is 2a, hence the sum of

-f 5a— 6a + 4a— a is + 2a. The plus 2a denotes that 2a has to

be added to an unexpressed quantity.

If we were required to add — 5a + Ga— 4a -f- a together, we could,

as has been shown, collect the negative terms into a single term, — 9o,

and the positive terms into a single term -|-7a. Wc would then be

required to take 9a from the sum of 7a and some unexpressed quantity,

or, which would be the same thing, to take 9a from 7a, and add the

remainder to the unexpressed quantity. But 9a is made up of 7a

added to 2a, and when, therefore, we subtract 9a from 7a, the 7a's

will strike each other out, and there will still remain 2a to be sub-

tracted. The required and unexecuted subtraction is indicated by the

minus sign before the 2a, and the true sum of— 5a -f 6a— 4a -f a

is therefore — 2a.

EXAMPLES.

1. Add 2 1— Gh + ah— 27j together.

Ans. +ah— 6i or (+ a— 6) J.

2. Add 4c -{- 3c— mc -{- no together.

Ans. (7 -\- 71— w) c.

3. Add xi/ -{- 2xy + hxy—pxy together.

Ans. (3 -f &—p) xy.
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4. Add 4a— 7a — 3a— 10a— 12a together.

Ans. — 28a.

5. Add 4ax— 7ax— dax— Wax— 12acc together.

A71S. — 2Sax.

CASE III.

29. When the quantities arc similar and dissimilar, and have like

and unlike signs.

RULE.

Add all (he sets of similar terms hy the. last two rules, and write

their sums one after another, and connect with them all the single terms

with their oion signs.

Since the letters are always the representatives of quantities, it is

obvious that the quantities represented by dissimilar terms cannot be

added into one sum. Thus, 4a + 46 neither make 8a nor 86. The

quantity a might represent a year, and the quantity h a pound ; then

4a would represent 4 years, and Ah would represent 4 pounds, and the

addition ought neither to give 8 years nor 8 pounds. Hence, we can

only reduce the similar terms in sets, and connect the results with their

appropriate signs.

3jn^ — n^ xy + Ix bax + y 2nx+ w
3x^ + ni' z -\-y x^ -\- Ay 2w -\- bnx

2m^ -\- x^ xy +ox Ax} + % 6».x4-s

Qm^ + Ax^— n"" 2xy+Wx+z^y bx^-\-bax^lAy V6nx+ ^io-\-s

30. It often facilitates an algebraic operation to arrange the terms in

a certain order. In addition, this arrangement is effected by placing

all the like terms beneath one another.

Ta^ 4 Qxy + 5^ + Aw la" + Aw + Qxy + bz

w -\-Az + 8a-y+ 12a^ may be written 12a-+ ?r + 'ixy + Az

Sz + 9xy+ bw + 100a- 100a"+ bw + 9xy + Sz

llda'+10w + 2nxy + Viz

31. Sometimes the addition of a compound quantity to a single quan-

tity, or to another compound quantity, is not actually performed, but

indicated by the parenthesis (), or vinculum. Thus, 46+ (6— c), or

4t ^ Ij— c, indicate that h— c is to be added to Ah.
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Remarks.

32. It will be noticed tliat the term addition in Algebra, is used in

an extended sense, the operation being often arithmetical substraction.

The addition of a negative quantity is, in fact, the same as the subtrac-

tion of the same quantity regarded as positive. The use of negative

quantities in Algebra constitutes one of its marked drfiferences from

Arithmetic, in which the numbers employed are always supposed to be

positive. By reference to the examples, another remarkable distinction

between Algebra and Arithmetic will be observed ; each sum indicates

Avhat (|uantities were added together, whilst an arithmetical sura con-

tains no trace of the numbers employed. Thus, the sum of 10 and 5

is 15, but the result does not point out the numbers that were added,

for 15 might proceed from the addition of 14 and 1, 12 and o, 13

and 2, &c.

It will be seen hereafter, that in all algebraical operations, the

result contains some, if not all, the quantities employed in the inves-

tij^atious.

SUBTRACTION.

33. Subtraction is taking the dlfR'rence between two or more

quantities, and may be regarded as the undoing of a previous addition.

If we were required to subtract + G — 4, or 2 from 12, the result

plainly ought to be 10. But if we write G — 4 beneath the 12, and

perform the subtraction of each term separately, the subtraction of 6

from 12 will give a remainder G, which is too small by 4, because we
were not re^juired to take 6, but 2 from 12. We can only correct the

error by adding + 4, and, hence, we have 12 — ( + G — 4) = 12 —
G 4- 4 = 10, as before. We observe, in the last result, that the signs

of G and 4 have both been changed.

Again, let it be required to subtract + i — c from a. The sub-

traction of h from a will be indicated by writing a — h, but tliis re-

mainder is too small by c, because we were not required to subtract h

itself from a, but what remained of h after it was reduced by c. The
error can only be corrected by adding plus -: to the result. Hence,

a — (+Z> — c)= a — 6 + c.
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In this general example, we see that all the signs of the subtrahend

have been changed, and then, it has been added, as in addition.

Hence, we have the following

RULE.

Conceive the signs of all the terms of the subtrahend to he changed,

and then add up these terms as in addition.
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will represent the actual value of the estate. Now, suppose some friend

of the owner should determine to cancel his debt ; he could do this,

either by removing the mortgage (in algebraical language, taking away

— h), or by giving him a sum of money equal to the debt, that is,

a sum represented by + h. So we see that, taking a-^vay — 6 is equi-

valent to adding -f- h.

35. Quantities arc considered negative, when opposed in character or

direction to other quantities of the same kind, that are assumed to be

positive.

Thus, if a ship leave port with the intention of sailing due north, but

encounters adverse winds, and is driven south part of the time; to get

the distance passed over .north, we must obviously subtract the distance

sailed over south. If then the direction north be considered positive,

the direction south must be considered negative. Suppose the vessel

sails first day 100 miles north to 10 south, second day 80 miles north

and 30 south, the entire distance passed over in a northern direction

will be expressed by 100 + 80— 10— 30 = 140.

If a man agree to labor for a dollar per day, and to forfeit half a dollar

for every idle day, and he labor 4 days and is idle 2, his wages will be

4x 1—2x J, or4x l + 2(— *) = 3. We see that we have re-

garded as negative, cither the forfeiture as opposed to gain, or the idle

days as opposed to the working days.

If a man's age be now thirty j-ears, his age four years hence will be

expressed by 30 + 4 ; his age four years ago by 30— 4. Here future

time being positive, past time is negative. If a steamboat sail with a

velocity of 10 miles per hour, and encounter a head wind that would

carry it back at the rate of 8 miles per hour, then its rate of advance

will be expressed by 10— 8, or 2 miles per hour. But if it be carried

back at the rate of 12 miles per hour, then its rate of advance will be

expressed by 10— 12, or— 2 miles per hour. It will then plainly be

carried back, and the minus indicates a change of direction.

Distance, when estimated as positive in one direction, is considered nega-

tive in the opposite direction. Thus, let the distanceAB= n and BC = w,

C
'- i , the distance BC being considered positive on the
A B ' '

° ^

right of B. Then AC^ wi + n. Now suppose the distance BC be esti-

mated on the left of B, the point C falling between B and A, then

AC = m— n. We see that the distance BC, which was regarded as

positive on the right of B, became negative when estimated on the left.
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In general, the minus sign may be regarded as always indicating

either that a quantity has changed its character or direction, or that it

is just the opposite of something else of the same kind that is con-

sidered positive.

MULTIPLICATION.

36. Multiplication is a short method of adding the multiplicand

to itself as many times as there are units in the multiplier. Thus, to

multiply a by Z) is to add a to itself h times, and since the addition of

a to itself twice is 2a, three times 3a, &c., the addition of a to itself h

times will be ha. Hence the product of a by & will be la or ah, for it

plainly matters not in what order we write the factors.

There are three cases :
—

CASE I.

37. When both multiplicand and multiplier are simple quantities.

Before giving a rule for the multiplication, it will be necessary to

show that the product of simple quantities having like signs, both plus

or both minus, is always positive, and that the product is always nega-

tive when they have unlike signs. The product of + a by -{-h is

plainly + ah, because plus a added to itself h times m.ust, of course, be

positive.

And — a by -\- h must be negative, because — a added to itself any

number of times must, of course, retain its sign. But — a by

—

h

will give + ah, for the h having a minus sign before it, indicates the

reverse of what it did before, and therefore denotes that — a is to be

subtracted from itself h times. But we have seen that the subtraction

of— a is the same as the addition of H- a ; in like manner, the subtrac-

tion of— a twice is the same as the addition of + 2o ; the subtraction

of— a tliroe times the same as the addition of + 3a ; and the subtraction

of— a, h times, the same as the addition of + a, + h times, or + ah.

Hence, the product — o by — & is + ah, and we see that like signs

produce plus, and unlike signs, minus.

Let it now be required to multiply a^ by a". The exponents indicate

that a enters twice as a factor in a^, and four times as a factor in a,

hence, it will enter 6 times as a factor in the result.
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Hence, a^ x a'' := aaaaaa= a^, and we see that the multiplication is

effected by adding the exponents of the same letter.

To multiply a^ by ab is the same as multiplying a^ by a, and then

multiplying the result by h. But to multiply a^ by a, we have only to

add the exponents of a^ and a, hence the result is a'. Now multiply

by b, and we have a'^b.

The multiplication is effected by adding the exponents of like letters,

and writing after the result the letter which is not common to the mul-

tiplicand and multiplier, with its primitive exponent. In like manner

a^ X ah^ will be a^b^. To multiply a\- by ab, is the same as multiplying

a^c by a, and then the result by b. But a'^c by a, as we have seen, gives

a^c, and that product by b, will plainly be a\b. And the multiplica-

tion is again effected by adding the exponents of like letters, and writing

after the result the letters, which are not common, affected with their

primitive exponents. The same reasoning can be extended to any num-

ber of factors, the multiplication being effected in every instance, by

adding the exponents of like letters, and writing after the result, the

letters not common, with their primitive exponents. Thus, a^cd by ab

gives aW6, and ah-d by abm gives a\dbni. We have taken mono-

mials whose coefficients were unity. If we were required to multiply

a by 2b, the product of a by 6 has to be nuiltiplied by 2, but the pro-

duct a by 6 is ab, hence the result is 2ab. If we were required to

multiply 2a by b, then 2a has to be added to itself as many times as

there are units in b, but to add 2a to itself twice gives 2a x 2 or 4a,

to add it three times gives 2a X 3, or Ga, and to add it b times gives

2a X b, or 2ab. In like manner, if we were required to multiply 2rt

by 4i, then 2a has to be added to itself -ib times, and the result will

plainly be 2a x 46, or Sab : the same result that we would get by

multiplying the literal factors together, and prefixing the product of

the coefficient for a new coefficient. Hence we have for the multipli-

cation of monomials, the following

RULE.

38. Multqjlr/ tJie coefficients to<jctlicr for a neio coefficient, and write

after it, all the literalfactors, common to the tico monomials, affected

with exponents equal to the sum of the exponents in the multiplicand

and midtipUer, and those, ichich are not common, with their primitive

exponents. If the monomials have like signs, give the phis sign to the

product ; if they have xmlike signs, give the minus sign to the j^roduct.

3
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EXAMPLES.

1. o\" X abX hdXmn. Ans. a?l?dcmn.

2. — ah X— ah X Id X nui. Ans. a^U^dcmn.

3. — a'c X— ah X— hd X mn. Ans. — a%\Jcmn.

4. — a-c X— ah X hd X— mn. Ans. — a^h^dcmn.

We see, that when the monomials are all positive, the result will be

positive ; and when the negative monomials are even in number, the

result will also be positive. But when an odd number of negative mo-

nomials are multiplied together, as in the fourth Example, or when an

odd number of negative monomials are multiplied by a positive mono-

mial, as in Example 3, the result will be negative. The result would

also be negative, if an odd number of negative monomial factors was

multiplied into any number of positive monomial factors.

CASE II.

41. When tlae multiplicand is a compound quantity and the multi-

plier a monomial.

The multiplicand is to be repeated as many times as there are

units in the multiplier; each term of the multiplicand is then to be

multiplied by the multiplier, and the partial products to be connected

with their appropriate signs. We might a.ssumc, what has already

been proved for monomials, that the product of a positive quantity by a

positive, or of a negative quantity by a negative, gives a positive result;

and that the product of a positive quantity by a negative gives a nega-

tive i-esult. But we can demonstrate this rule more rigorously : Let it

be required to multiply a — a hy + c. We know that a — a is zero,

and that zero repeated c times must still be zero. Hence, the product

of a — a by + c must be zero. But + ahy + c gives -|- ac for a

product, and, therefore, the product of — a by -|- c must be — ac, in

order to cancel the first product. Hence, the product of a negative

quantity by a positive gives a negative result. Or, to express the

whole algebraically,

a — a =
+ c

j-ac— ac = o



28 M U Ti T I P L I C A T I N .

Let it now be re((uired to multiply a — a by — c. The multipli-

cand being zero, tlie product must be zero. But, from wliat has just

been shown, the product of + a and — c is — ac, hence, the product

of — a by — c must be + ac, to destroy the first product. Or, in

other words, the product of a negative quantity by a negative must be

effected with the positive sign.

Algebraically, a — a = o

— c

We conclude that the product of a positive quantity by a positive, and

of a negative quantity by a negative, is positive ; and that the product

of a positive quantity by a negative is negative. Briefly, we say like

signs give a positive result, and unlike, a negative result.

RULE.

Multiply each term of the vudtiplicaud hy tlie midliplicr, and con-

nect the res^dts ivith their appropriate signs.
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CASE III.

42. When tlie multiplicand and multiplier are both compound quan-

tities.

The multiplicand, as in the two preceding cases, is to be repeated as

many times as there are units in the multiplier. The multiplicand and

multiplier will, in genei*al, be made up of some positive and some ncg:'-

tive terms. Let a denote the sum of all the positive terms in the mul-

tiplicand, and b the sum of all the negative terms. Let c denote the

sum of the positive terms in the multiplier, and d the sum of all th(>

negative terms. We write the multiplier beneath the multiplicand

and multiply all the terms of the one by all the terms of the other.

Thus, a

c
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RULE.

44. Arrange the miiUipUcand and multiplier tvith reference to the

highest or loicest exponent of the same letter (if tliey have a common

letter'), and then multiply each te^m of the one polynomial by each term

of the other polynomial, leg inning on the left. Set down the result of

the midtiplication of the second term of the multiplier under that of the

first term, only removed one place further to the right, and the result

of the multiplication of the third term of the multiplier %inder that of

the second, and contimie the operation until the multiplication is com-

plete. Then reduce the lohole result to the simplest form.

1. X + a

X? + ax
— ax— a?

:i? + — d'- = x^— a^.

. X^ + O.T^ X

x^ -\- ax -\- \

xb + ax'^— x^

+ ax'^ + ax^— ax^

+ a;' + ax^— x

cc5 + 2ax'^ + ax^ + o— x

2. x^ -{- xy -\- a

X +y
x^ + x'y + ax

-\- x^y + ar/+ ay

X* + Ix^y + ax + xy^ + ay.

a? + 2xy + f
X—y

x' + 2x^y + y'^x

— x^y— 2y'^x— y^

*' + x'y— y'^x —/

45. It will be observed in the above examples, that by arranging

with reference to a certain letter, and by removing each result one

place further to the right than the preceding, the terms which reduce

fall immediately the one below the other. And it is to save the trouble

of looking for the terms which reduce, that this arrangement and sys-

tem are made. It will also be noticed that in every product there are

two terms which do not reduce with other terms, viz., those which

result from the multiplication of the quantities affected with the highest

and lowest exponents of the arranged letter.

In the first example, x^ and — a^ are the irreducible terms, in the

second, x? and ay.
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EXAMPLES.

6. Multiply X -\- 7/hj X -{- 1/.

Ans. x' + 2xi/+7/\

7. Multiply X + y by cc — i/.

Ans. 7? — 1)^.

8. Multiply x^ + Ixy + ^^^ by + cc + y.

.4ns. x^ + Zx^ij + ^n'^x + y^.

9. Multiply X' — 2xy -\- y^\>^ x + y.

sins. X? — x-y — xy'^ -\- y^.

10. Multiplyx^ — T/^byx^+y.
Ans. x^ + y^x" — x'y' — /.

11. Multiply a- + lax + a;^ by x -^r a.

Ans. a;' + Sux'^ + 3alt+ a'.

12. Multiply .t' + a^" + 3aa; + 3«.7;2 by x + a.

.'1/)S. x" + 4ax' + 6al<;2 + \c{'x + a^

13. Multiply 7x-^ + 2« by %y'--

Ans. 2.\oh/ + 6^7/^.

14. Multiply 4a;* + y^ by 4.c*— y*.

.4«s. 16x^— /.
15. Multiply x^ H- o.c^ + a^x + a' by 2r/ + 2.f.

^ns. 2a;'' + hix^ + 4(/^.r + 4a='a: + 2^".

16. Multiply x^ + xy + / by 1x + 7y.

^«s. 7.<' + 14a-y + 14a-y^ 4- ly^.

17. Multiply a;' + ax' + a^x^ + a'x + a< by 4a; + 4a.

ylns. 4x* + Sax* + Sa^x' + 8aV + Sa^x + 4al

18. Multiply 2x' + 2ax + 2a' by 3x + 3y.

Ans. ^x^ + Gax' + Gx^y + Ga'x + G«xy + Ga^-

19. Multiply 2a2 — 2^^ by 2a + 26.

.4«s. 4a3 + 4a^6 — \aV — \h\

20. Multiply 2x + 3a + 46 by y + z.

Ans. 2xy + Zay + 46y + 2x3 + 3a2 + Ahz.

21. Multiply 2x + 3a + 46 by 2x — 2y.

Ans. 4x' — 4.ry + 6ax + 86x — Qay — 8iy.

22. Multiply 4/ + 4x^ + 4m?i by 2x + 2y + 2z.

Ans. 8y=' + Syx' + Sywin + 8x' + Sxy' + ^xmn + Sy''^ + Sx's

+ 8m?tz.
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RemarJis.

46. It -will be seen, by inspecting tlie above results, that when the

two polynomials are both homogeneous, the product is also homoge-

neous, and of a degree equal to the sum of the dimensions of the mul-

tiplicand and multiplier. Thus, in Example 7th, the first polynomial

is homogeneous, and of the first degree ; and the second is also homo-

geneous of the first degree, the product is homogeneous of the second

degree. In Example 8th, the multiplier is homogeneous of the second

degree, and the multiplier is homogeneous of the first degree; the product

is homogeneous of the third degree. The same may be noticed in

several other examples.

2d. We notice also that when the coefl&cients are the same in each

term of the multiplicand, and the same in each term of the multiplier,

and all the terms of both polynomials are positive, that the sum of the

coefiicients in the product will be equal to the product arising from mul-

tiplying the sum of the coefiScients in one polynomial by the sum of the

coefiicients in the other. Thus, in Example 16, each coefficient of the

multiplicand is 1. and each coefficient of the multiplier 7. The sum of

•the coefficients of the multiplicand is 3, and that of the multiplier 14

:

the sum of the coefficients in the product is 3 X 14 = 42. The same

law may be noticed in Examples 15, 18, and 22.

47. Examples 10 and 19 show. that when the multiplicand is com-

posed of the diff"erence of two terms, whose coefficients are equal, the

algebraic sum of the coefficients in the product is zero. Examples 7

and 21 show that this sum is also zero when the multiplier is composed

of two terms with contrary signs and equal coefficients.

3d. It has already been remarked that there are always two terms,

which do not reduce with any other terms. We can only reduce similar

terms, and when the two polynomials have been arranged with respect

to a certain letter, the products of the extreme terms are dissimilar to

the other partial products. The whole process of division of polynomials

is based upon this fact, and it ought to be remembered. By attending

to the above laws in regard to the product, we can often by a simple

inspection detect errors in the multiplication.

There are three theorems of great importance, which must be com-

mitted to memory.
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Theorem I.

48. The square of the sum of two quantities is equal to the square

of the first, plus the double product of the first by the second, plus the

square of the second.

Let X denote the firi<t <[uanlity, and a the second, then .r + a = sum

and {x + «)^=(x 4- a) (.c + a), which, by performing the multiplica-

tion, will be found equal to x^ + lax + a^.

Hence (x + iif^=x^ + lax + a^, as enunciated.

So (10 + 5/ = 10^ + 20 X 5 + 5^ = 100 + 100 + 25 = 225.

And (40 + 6/ = 40^ + 80 X 6 + G^ = 1600 + 480 + 36 = 2116.

In like manner (x"" + a"/ = x^"" + 2x'"a'" + a^"".

The rule may be extended to binomials of any form.

Thus, (3a + hj = (3a)^ + 6a/j -\- V = Oa^ + 6«& + i'-

(7x + ^yf = (7x)=+ 14x ibij) + {hyf = 49x^ + lOxy + 25f.

A polynomial may be squared by the same formula.

Let it be required to square x + a + i/.

Make X + a = z.

Then X + a + jy = r:+7/ and (x -f a + yf = (^ + yf = :? + 2.ry

+r-
Now substitute for z its value x -\- a, and we have (x + a + yf =

(^ +af+2 (x +a)y + f = x'+ 2ax + x' + 2x>/ + 2ay + //.

Required the square of 2^ -f x + «t + n.

Let 2}/ -{- x = z, and m + '* = s.

Then (2y + x + m + nf = (z + sf = z' + 2zs + s' = (2y + xf
+ 2 (2>/ + X) (m + n) + (m + nf == 4/ + 4yx + x' + 4>/m + iyn

-f 2xm + 2.rn + ni^ + 2»i/( + n\

Required the square of oy + 4x + m + 2n-f 5.

Represent the first three terms by a single letter, and the last two

also by a single letter, and proceed as before.

TlIEOHEM II.

49. The square of the diiTorcnce of two quantities is equal to the

square of the first, minus the double product of the first by the second,

plus the square of the second.

Let X and a denote the quantities, then x— o = difference.

And (x— a)^ = (x— a) (x— a) = x^— 2ax + a^, as enunciated,

So(10— 5)^ = 10^— 20x 5+ (5)2=^100— 100 + 25 = 25.

And(40 — 6)^ = (40)^— 80 X 6 + 6^ = 1600—480 + 36 = 1156.
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In like manner (a;"— a"")^ = x^'"— 2x"'(r + a^'".

llequircd tlie square of 2x— a. Ans. 4x'^— 4ax + a^.

Required the square of 3a; + h— a.

Ans. (3x + hy— 2 (Sx + h)a+ a^ = dx^ + Q>hx + 1/— Qax— 2ah

+ aK

llequircd square of a;^— a^. Ans. x^— 2x^a? + a^.

Theorem III.

50. The sum of two quantities multiplied by the difference of the

same quantities, is equal to the difference of their squares.

Let X and a denote their quantities.

Then x -{• a= sum, and x— a = difference, and (.« + o) {x— a)

== x^— a^, by performing the multiplication indicated.

So (10 + 5) (10— 5) = (10/— (5)^ = 100— 25 == 75.

And (40 + 6) (40— 6) = (40)''— (6)*= 1600— 36 = 1564.

Multiply (4« + 6) by (4a— 6). Ans. 16a^— 6^

Multiply la + /j + f by 7a + 6— c.

Ans. (7a + ly— c' = 49a2 + Uab + J/— c\

Multiply x -\- y + z + m\)j .K -\- y + z— m.

Ans. (,x +1J + zj— m'' = x' + f+ z" + 2xy + 2xz + 2ijz— m".

Multiply X -\- y ^r z -{- m\)^ X \- y— z— m.

Ans. {x + yf— {z + mj- = a-^ -f 2xy -\- y'^— ^^— 2mz— m'-

V

Remarks.

51. If we omit the exponents of the extreme terms in the expres-

sion, x^ + 2«x + a^, and connect these terms with the exponents so

omitted, by the sign of the middle term 2oa-, we have a; + a, the bino-

mial, which squared gave x? -f 2aa; + a^- In like manner, if we omit

the exponents of x^ and o^ in the expression, a?— 2aa; -f o?, and con-

nect them with their exponents omitted by the sign of the middle term,

we have x— a, the binomial, which squared gave a;**— 2ax + a;l

In like manner, if we have given the difference of two squares, we

can readily determine the quantities which, by being multiplied together,

gave this difference.

Thus n^— ?j^ = (m + n) (m— ?i), and r-— .s^-:= (r + s) (r— s).

Omit the exponents, connect the terms by the sign plus, and we have

the sum of the two quantities ; omit and connect by the .sign minus, and
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WO have the difference. And the product of the sum by the difference,

is the difference of the squares. These remai-ks are preliminary to an

important subject.

FACTORING POLYXOMIALS.

52. It is often a matter of great importance to resolve a polynomial

into its factors. The reduction of expressions can often be effected in

this way, and in no other. Practice alone can make the student expert

in the resolution of an algebraic expression into its factors. A few rules

may, however, assist the beginner.

53. 1st. Look out for the terms which have a commoa factor, and

write them- in parenthesis, as a multiplier of that factor j next look for

another set of terms also having a common factor, and write them in

like manner; proceed thus until all the terms are taken up. Observe

whether the parenthetical expressions are the same, if so, multiply the

common parenthesis into the ahjchraic sum of the terms to which it

serves as a coefficient.

1. hx + ha->r CX + ca = h (./- + a) + c (.c + o) = (x + a) {h + c).

2. hx + ha— cx— ca = h{x -\- a) + (x^ a) (— c) = (x + a) {h

-c).
3. — hx— ha -f ex + ca = (— h) (.r + a) + (.c + a) c = (x + a) (r

4. hx + ex -\- ha + dx + da -f ca = (.c -{. a)h -{ (x -\- a) c-\- (^x-'r a)

d = (x+a) (h+c-ird).

5. hx-\- ex -\- ha— dx— d(t -f- ca = (x + o) (h -\- c— d).

6. a^ +ax + hx-{- ah = {x + a) x +(x- -{-a')h = (x+ a) (x + 6).

7. x^— ax -{ hx— ah = (x— «) (x + />).

8. x^— ax + hx— ah + x^— ax' = (x— a)(x+h + x").

9. x^— ax + hx— ah -f mx^— ajnx^ = (x— o) (x + h + mx^).

10. x^— ax + ix— cd) + amx^— mx^ = (x— a)(x -\- h— mx^).

54. 2d. After having found a common factor or parenthesis, see

whether that factor may not admit of farther reduction. (Articles 48,

49, and 50.)
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EXAMPLES.

1. W + Ihn + 6 + cn^ + 2c??. + c = h (n^ + 2w + 1) + c (u' + 2«

+ !) = (]> + () («2 + 2u + 1) = (?, + c) (n + 1)1 (Article 48.)

2. bn''— 2/';h + Z> + C7i'— 2ai + c = {b + c) («— 1)''. (Art. 49).

3. am" + hm^— an'— hit^ = (a + h) (vi' —ir) = (a + b) (m +
7i)(^m— n). (xVrticle 50).

4. am^— bm^— an^ + bn^ = (a— b') (vi + n) (m— «).

5. «=> + 2n' + 7i = n (n + \)\

6. n^ -f 2;i^ = n^ (ji + 2). Admits of no lower reduction.

7. «='— 2n:2 + 7i = n (n — If.

8. ii^— 2n^ + n + 07111^— 2mn + m = (n + m) {ii— 1)1

9. n^— 271^ -\- n— wi/t^ + 2mn— m= (ii— vi) (n— 1)^.

10. — n^ + 2?t^— n + mii'— 2mn + m = (m— n) (n— 1)1

11. _ „3 + 2»2— ?i— m/i" + 2??j?i— wi = — (/I + m) (?i— 1)1

12. m^— n'— 2c7i— c^ = m^— (h + cf.

We have now the differences of two squares, and to apply the formula

x"— a^ = (x + a) (x-— a). (Art. 50).

We see that m^ = .r^, or on = .r, and (n + cf = ry^, or w + c = a.

Hence (x -\- a) = {m + ?i + c), and (.r— ff) = hn— n— c).

Therefore m^— (?i + cf = (vu + n + c) (?n— n— c).

13. m^— 11^ + 2cn.— c^ = Hi^— (n — cf = (m + n — c) (in + c

— ??). In this Example m = x, and n — c = a.

14. m- + 2Z;??i + b^— n""— 2cn ^ n" = (m + bf— (n + cf = (m

+ b + n -\- c) X (m + b— n— c).

55. 3d. Expressions may sometimes be thrown into factors by an

artifice, when they do not at first glance appear to admit of resolution

into factors. One of the simplest contrivances to effect a decomposition

into factors is the addition to, and subtraction of the same quantity

from the given expression, which operation docs not, of course, alter its

value.

EXAMPLES.

1. x^^2x— l'i = x-— 2x + 1— 15—l = a;^— 2a: -r 1— 16

= (.r— 1)^— lG = (a'— 1)^— (4)=^^(x— 1 + 4) (a;— 1 — 4).

Art. 50. ={x + o) (x.— b).
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In this example, the decomposition was effected by adding + 1, and

subtracting the same from the given expression. The first three terms

of tlie equivalent expression were thus made a perfect square = (x— 1^),

and the whole was made the difference between two squares.

2. x" + -ix— 12 = x' + -ix + 4 — 12 — ,4 = (x + 2)^— (4)^ =
(x + 0) (X— 2).

3. x' + 2x — S =x' + 2x + l — S — l= (x + lf — (Sy =
(., + 4) (x — 2).

4. x' + 4x — 21 = x' + 4x + 4 — 21 — 4 = (.f + 2)^— (5/ =
(x + 7) (x — n).

5. x^ + 8x — 48 = x' + Sx + IG — 48 — IG = (x + 4/— (8)^

= (x + 12)(x— 4).

6. x' ^ 10.r + 24 = x" 4- 10a: + 25 + 24 — 2-5 = (x + 5)^— (1/
= (x -h 6) (X + 4).

7. ;y2 _u 8x + 12 = X' + 8x +1G -f 12 — IG = (x + 4)= — (2/
= (x + G) (X + 2).

8. x^ + 20x + 84 = x^ + 20x + 100 + 84— 100 = (x + 10/—
(4y = (x + 14) (re + G).

9. x' 4- 12x + 2 = x' + 12x + 30 + 2 — 3G = (x + G)^—V (34/
= (x + G + V34) (x + 6— v/34). '

10. x' + 3x + 5= x' + 3x 4- » + 5— 9 = C.r 4. |)2 _ ^"(=^17/

= (-*^ + 1 + V—y) (-r + 5 — v/— '.,')•

11. x^— lOx 4- 24 = x^— lOx 4- 25 4- 24— 25 = (.r_5/— (1/
= (,;_4)(x-6).

12. x^— 8x 4- 12 = x^— 8x + ] G + 1 2 — IG = (x — 4)^— (2/
= (,c_2)(x-G).

13. x^— 1 Ox— 24 = x'— lOx + 25 — 24 — 25 = (x — 5)-—
(7/ = (x + 2)(x— 12).

14. x' — 10./-— 24 = ./•'— 10./;2 4- 25 — 24 — 25 = ^x^— of—
(7/ = (.r^4-2)0-^— 12).

15. ^>-6 _j. 4,.3_ 12 = .,/• + 4.f3 4- 4 — 12 — 4 = (.,;' 4- 2)^— (4)"

= (x'4-G)(.f^— 2).

IG. (f- 4- 2aIj— SI/ = >r + -lab -\- Ir—W = (a -f If— (2hf =
(a + 3i) (a — h-).

17. a^ 4- 2((h — m^— Ihm = rt^ 4- 2ah + // — m^— 2hm— 1" =
{a + ly— (m + h'f = (a 4- hi + 2Z/) (a— m).

18. a' + 2ab — TO^ + 2bm = a" + 2ab 4- &'— m^ 4 2bm — b^ =
(a + bf—(in— bf =^{a + m){a — m-\- 2b').

4
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DIVISION.

56. Division consists iu finding how many times one quantity is

contained in another.

The quantity divided is called the dividend, that by which it is

divided, the divisor, and the result obtained the quotient.

57. It follows from this that the quotient multiplied by the divisor

must give the dividend.

The quotient is said to be exact when the dividend contains the

divisor an exact number of times. When this is not so, the quotient is

called imperfect.

It will be seen that the object of division is to find a quantity called

the quotient, which, when multiplied by the divisor, will give the

dividend.

The result of the division of 4rtx by 2a is plainly 2x, because 2a X

2a; = 4aa", the dividend.

So, —- = la, because 7a X ac = 7a^<:.
ac

But —;

—

— gives — 1x for a quotient, because 2a X (— 2x) = — 4ax.

i , — 7a^c ^ . ^ „ 2And = — ia, because — i a x ac = — ia'^c.

ac

58. And, in general, since the quotient into the divisor must give the

dividend ; when the sign of the quantity to be divided is unlike that by

which it is divided, the result will be negative, and when the sign of

the quantity to be divided is like that by which it is divided, the result

will have the positive sign.

Thus,
J-
= + a, because + a X — h = — ah.

59. In Division, then, as in multiplication, like signs produce +,

and unlike signs —

.

There are three cases iu Division.

CASE I.

Whe7i the dividend and divisor are hoth monomials.

60. Divide a^ by a ; we are to find a quantity, which, multiplied by

a, will give aj^. This quantity is plainly a^, because a^ X a = a^.
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And, since, in multiplication, we add the exponents of like letters, Ave

must, in division, subtract the exponents of like letters.

Divide 6a' by 2«, the result is obviously 3a^ ; because 2a X oa^ =
Qa". And since, in multiplication, we multiply the coefficients together

for a new coefficient, we must, in division, divide the coefficients for a

new coefficient.

Divide a'^b by a, the result is plainly ah, because oh X a = ci^h.

Divide a^6V by a, the result is aiV. And, in general, if there arc

letters in the dividend not common to the divisor, they will enter into

the quotient with their primitive exponents.

RULE.

61. Divide the coefficient «f the dividend hi/ the coefficient of the

divisor for the coefficient of the quotient. Write after this neio coeffi-

cient all the letters common to dividend and divisor affected icith expo-

nents equal to the excels (f the exponents of the dividend over those of

the same letters in divisor, and icrite the letters common to the dividend

only with their primitive exponents. Give the quotient the sijn -{

,

where the monomials have likf siijns, and the si(/n —, ichcre they have

unlike signs.

F.X.VMPLES.

1. Divide x^y by x.

2. Divide — x^y by x.

8. Divide — .r'y by — .r.

4. Divide x^y by — x.

5. Divide 4a"'Z>Pc by 2tl

6. Divide — AOx^'yz^ by — 20x>'"2-''.

7. Divide a-?/ by x'y.

8. Divide X y by a;,?/.

9. Divide a;V by x'lf.

10. Divide x\if by a^V-

11. Divide .^s' by 2V.

12. Divide z's^ by zV.

13. Divide lOOOa^Z-" by SOOa-^i-".

14. Divide 1000a-"Z;-" by — SOOa-^i".

1

15. Divide a; ° ?/" by .t^".

Ans.
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02. It will be seen that the division of monomials is impossible when
the coefficient of the dividend is not divisible by that of the divisor,

and when the divisor contains one or more letters than the dividend.

63. In such cases, the quotient appears in the form of a fraction,

which may admit of farther reduction by striking out the common fac-

tors. Thus, the quotient arising from the division of 7a^ by 'la^b, is

-r—rr, because —^r- X la^b is plainly equal to the dividend 7«^. But
la^b Za^b

-r-^ may be reduced to -— by striking out the common factor, a^.
'lo?b '' 'lb ^ "^ '

In like manner, la^b, divided by 2«//, is -—- = -—

.

64. We will now demonstrate two principles which will enable us

to reduce such expressions still lower.

1st. Any quantity raised to the zero power is equal to unity, that is,

a° = 1. For — by the rule for the exponents in division is equal to

ara-m _ f,o^ j^j^^^ ^ny quantity divided by itself is also equal to one.

Hence, — = a" is also equal to 1. Therefore, rt" = 1.

In like manner, 2" = 1, and . (1000)" = 1, and (a + by = 1, &c.

65. 2d. A quantity may be transferred from the numerator to the

denominator, or from the denominator to the numerator, by changing

the sign of its exponent. For a~'° may be multiplied by — = 1,

without altering its value.

„ a" a" 1
Hence, a~ " = a""" x — = — = —

a™ «™ o™

But we know that «-">= —-— which we have seen, is also eqiial to — .

1 ri™

The quantity a"" has then gone from the numerator to the denominator,

by changing the sign of its exponent.

In like manner, a"*""" may be multiplied by -3- = 1, without altering

its value.

Hence,

So,
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The quantity z^ has passed from the denominator to the numerator

by changing the sign of its exponent.

1 1 Z^ Z^ 2P

'
z~'^ z~'' z^ z° 1

66. By the first principle, the quotient in Example 15 may be

_L-2 _L-2
changed into x" . 1 = x- >

By the second principle, the quotient of Icrb by 2a^b may be

changed into -;j^l>~\ and the quotient of la'^b by 2«Z/^ may be changed

into —ah~\

Divide x^t/ by x^i/^c. Ans. a~'^~'c~', or

67. In this example, and in all similar examples, when the divisor

contains a letter or letters not contained in the dividend, we may con-

ceive this letter, or these letters, also to enter into dividend raised to

the zero power, and to execute the division, we have only to subtract

the exponents of like letters, as before. Thus, x^y may be written

x^i/c°, and we have only to subtract 1, the exponent of c- in the divisor,

from o, the exponent of c in the dividend. The result will be o— 1,

or — 1.

Divide x^y by a?b\* ; then x^y = x''ya''b°c'', and the result will be

x'ya-'b-'c-".

68. Strictly speaking, then, there is but one case in which the divi-

sion of monomials will not give an entire quotient, and that is, when

the coefficient of the dividend is not exactly divisible by the coefficient

of the divisor.

CASE II.

69. When the dividend is a compound quantity, and the divisor a

monomial.

The dividend may be regarded as the product of each term of the

quotient sought by the monomial divisor; hence, to find this quotient,

we must divide each term of the dividend by the divisor.

4*
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70. Divide each term of the dioidcnd separately hy each term of the

divisor, as in Case I., and conned the partial quotients hi/ their ap-

propriate signs.

EXAMPLES.

1. Divide 6x-/— ^xhjz + 802 by 2.z.

Ans. ^xhfz-' — 1x?ij^\a.

2. Divide oc^ + 2a.c + a^ by x. Ans. ic + 2a + o^.»~'.

3. Divide r? + .r"+' + a-''+^ + x^"^ by a:?.

71h,s. i + x + :r- + .7/

4. Divide x-^ + x-p+' + rc-P+'' + x-'^"^^ by a;-p.

^??.s. 1 + .T + x^ + x'

5.
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true term of the quotient and multiply it into the divisor, the product

will be so much of the dividend as is made up by the multiplication of

this second term of the quotient by each term of the divisor. And if

we subtract this product from the first remainder, the new remainder,

if there be any, will be so much of the dividend as is made up of the

product of the remaining terms of the quotient not yet found by

each term of the divisor. We can thus regard each remainder in

succession as a new dividend until all the terms of the quotient are

found.

72. The whole difficulty then consi.^ts in finding, in succession, true

terras of the quotient. Now, we have seen that in the product of poly-

nomials there are always two terms which are dissimilar from the other

terms, and, consequently, irreducible with them. They arc the terms

arising from the multiplication of the two terms in the multiplicand and

multiplier affected with the highest and lowest exponent of the same

letter. If, then, we divide that term of the dividend which contains

the highest exponent of a certain letter by that term of the divisor

which contains the highest exponent of the same letter, we are sure of

getting a true term of the quotient. For this terra of the dividend has

been formed without reduction from the multiplication of the corres-

ponding term in the divisor by the quotient found.

73. In like manner, if wc divide the terms afiected with the lowest

exponent of the same letter, the one by the other, we are sure of get-

ting a true term of the quotient sought. For this reason, the dividend

and divisor are arranged with reference to the highest or lowest

exponent of the same letter, generally with reference to the highest.

AVhen so arranged, the first term of each successive remainder will con-

tain the highest or lowest exponent of the letter according to which the

polynomials are arranged, and will, when divided by the fir^t term of

the divisor, give a true terui of the quotient.

The divisor in Algebra is written on the right of the dividend, and

the quotient imraediately under the divisor.

Divide a^ + 2ah + h^ hj a + h.

Dividend. Divisor. Dividpud. Divisor.

or i^ -f 2ha + a- \ h + a

h^ + ha
\ h -u a
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74. We see, that by arranging dividend and divisor with reference

to the ascending or descending powers of the same letter, and dividing

the first term of the dividend and the first of the remainder by the first

term of the divisor, we necessarily get true terms of the quotient. But

if the polynomials are not arranged we will not get true terms of the

quotient. Write the dividend and divisor thus,

Dividend. Divisor.

V + h' h

a
— — &c., Quotient.

a

We get — for the first term of the quotient, which is not a true

result. It is also plain that the division would never end.

75. Since each successive remainder may be regarded as a new poly-

nomial, to be divided by the divisor, we can change the arrangement

of the remainders at pleasure, provided we make a corresponding change

in the divisor. lu the example above we might arrange the remainder

ah + h"^ with reference to h, and write it V^ + ah, provided we change

the arrangement of the divisor, and write it 6 + a.

^
RULE.

76. Arrange the dividend and divisor with reference to the ascend-

ing or descending powers of the same letter, and then divide the first

term on the left of the dividend hy the first term on the left of the divi-

sor. This will give the first term of the quotient.

Multijyly this term into each term of the divisor, and suhtract the

productfrom the dividend. Divide the first term of the remainder hy

the first term of the divisor for the second term of the quotient. Multi-

ply this term into the divisor, as hefore, and suhtract the pjruduct froin

the first remainder.

Continue this process, dividing the first term of each remainder hy

the first term of the divisor until we get a remainder, zero, when the

division is said to he exact.

But, if the exponents of the letter, according to which the arrange-

ment is made, are all positive, and the first term of any remainder is
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not divisible hy the first term of the divisor, the quotient is incomplete ;

or, -if some of the exjwnents are nerjative, and the letter, according to

which the arrangement has been made, has disappearedfrom any of

the successive remainders, the quotient is also incomplete.

EXAMPLES.

1. Divide x=' + Sax^ + Sa^x + a"" hy x + a.

Ans. x'^ + 2ax + a*.

2. Divide x* + 4«j;' + Gr/^x^ + Aa^x + x' by x + a.

Ans. a;» + 3ax* + 3«^x + a\

3. Divide x^ — ^x^y + 'ixy^ — y by x — y.

Ans. x^ — 'l.ry + y'^.

4. Divide 4a== — I'' by 2a + h.

Ans. 2a — b.

5. Divide x" — y"" by x — y.

X —y
G. Divide x' — y^ by x^ — y^.

Ans. x« + xY + ./.y + /.

7. Divide x" — y'^ by x- — /.

Ans. x'" + x^^^ + xy + xy + ^y + ^"'•

8. Divide x' — y by x^ — y\

Ans. x^ -\- xy + xy* + xy* — ;/

9. Divide x' — ?/^ by x' — y^.

Ans. X* + xy 4- y^.

10. Divide x^ + / by x" + y\

Ans. x« — xV^ + xy — / + 2^y^

•T^ + f.
11. Divide x'^' + y'^ by x" + /.

Ans. x'" ~ xy + xy — xy + xy — y'" + 2//'^

12. Divide x' + y by x" + /.

-4??s. x^ — xy + xy* — xy* + ?/

x^ + /.
13. Divide x® + y^ by x' + y\

J.ns. X* — x'^' + y^-
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14. Divide x'' + if^ by x" -\- f.
Ans. .t'" — x'l/ + y"»,

15. Divide .r'^ + y'^ by x"^ + if.

Ans. x'^ — .ry + a;y — xV + y'\

16. Divide 7ff.r — lai/ + 7«6 + Z>x — hy -\- Ir by Ta + h.

Ans. X — y -{- h.

17. Divide x'^y-^ + a; ' + :^-y + ?/-' by a;^ + if.

Ans. x-^ + ?/-^.

18. Divide 14.x» — 14/ by Ix^ — If.

Ans. 2x« + 2xy + 2xy + 2/.

19. Divide a^ — 2nx + a;^ + 2f/y — Zxy by 2y + a — x.

Ans. a — X.

20. Divide ax^—2>arx-\-ar^+hx'^—'2hi\x-\-hr^-\-cr'^— '2crx-\-cx?- hyx—r.

Ans. {x — r) (a + i + c).

21. Divide s'^ — 2sx -[ x^ -\- rs — 2xr -\- r^ -\- rshj s — x -\- r.

Ans. s — X -\- r.

22. Divide 50x« + 50/ by 25^' + 25/.

Ans. 2x' — 2^^/' + 2f.

2.3. Divide (a -{- h -\- c) (x — rf by (a J^ h -\- c) {x — r).

Ans. X — r.

24. Divide ^V' + ^'^ + oc" + y + fh + x'-f by a;' + /.

Ans. y~^ -\- Jj -{ x~'^.

25. Divide A^x^ — 64^^^^ by Ix^ + 8^y.

^Hs. 7icy — 8r^.

26. Divide a« — h^ by a^ + V.

Ans. a' — oH;' + h' — 2^
a' + //.

27. Divide a'" — ?/° by a^ + h\

Alls, a'— a'l/ + a'h* — a%' + h' — 2h^
a^ + lA

28. Divide a' — I' by n^ + ?>'•

Ans. a" — a'Jr + a'b' — fA

29. Divide a'' — V by «=' + h\

Ans. a^ — a'^I/ + a'Z*« — 6'.

30. Divide a'° — l'° by a' + ?/.

31. Divide 4 by 1 + :r.

Ans. 4 — 4.r + 4^2 — 4j-' + 4a;''

^1 + X.
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32. Divide 4 by x + 1.

Ans. 4./;-' — 4.r-^ + 4.r-^ — 4.r-^

a; + 1.

33. Divide m — ?ix + px^ — ^x^ by 1 + a-.
*

Ans. m — (m + n) x + (??^ + n -\- p) x^ — otlier terms.

34. Divide 1 + x by 1 — :r.

Ans. 1 + 2x + 2.f2 + 2.6=' + &c.

35. Divide 1 — x by 1 + x.

Ans. 1 — 2.r + 2.v;^ — 2..=' + &c.

30. Divide x'= + «^ + ax + 1 + xi/ by x + o.

Ans. .r -\- y -^ 1

X -\- a.

37. Divide x^ + x^ + 5 by x=' + 2.

J»S. .T + 1 + 3 — 2.T

i?f?na?-/is.

77. I. When the exponents of the arranged letter in dividend and

divisor are all positive, the division will not be exact if the first terra

of any of the reinaiudcrs docs not contain the arranijed letter to a higher

power than it is contained in the divisor. "When, therefore, we got a

remainder in which the first terra contains the arranged letter to a lower

degree than it is contained in the divisor, we need proceed no further,

for we can never arrive at an exact quotient.

If some of the exponents of the letter, according to which the poly-

nomials are arranged, are negative, the last rule will not hold good, for

the result of the division will be a term affected with a negative expo-

nent, and there ought to be one or more such terms in the quotient,

[f, however, the letter, according to which the ai'rangement has been

made, has disappeared from any of the successive remainders, we need

proceed no further.

II. Examples 6, 7, and 9, show that the difference between the like

powers of two quantities is divisible by the like powers of a lower degree

of those quantities, when the common exponent of the dividend, divided

by the common exponent of the divisor, gives an exact quotient. And

they show that the number of terms in the quotient is expressed by the

quotient of the exponents. Thus, in example 6 there are four terms

8
in the quotient, the same as— the quotient of the exponents. In ex-
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ample 9, the quotient of the exponents is three, and the division is

exact, with three terms in the result.

III. Examples 13, 14, and 15, show that the sum of the like powers

oftwo quantities is divisible by the sum of the like powers of the same

quantities when the result of the division of the exponents is odd.

IV. Examples 28, 29, and 30, show that the diiFerence between the

like powers of two quantities is divisible by the sum of their like powers

when the quotient of the exponents is even. In the last two cases, as

in the first, the quotient of the exponents gives the nuuibor of terms in

the result.

V. If all the exponents of the dividend and divisor are positive, we

can tell, by a simple inspection, in many examples, whether the divi-

sion is possible; when the extreme terms of the arranged polynomials

are not divisible by each other, the quotient will not be exact. Take

^ -f ^Ixy + 'if', to be divided by ^ -^ tf ; the division is impossible,

because the exponents of the result must be positive ; and oi^ by x* will

give a;"'. It, of course, does not follow that the division will give a

complete quotient when the extreme terms are divisible by each other.

Take a;^ -f 4 + if, to be divided by .-r \- y ) the extreme terms are

divisible by each other, but the quotient of the polynomials is not

exact.

PRINCIPLES IN DIVISION.

78. I. We will now show that the difference between the like powers

of two quantities will be divisible by the difference of their like powers

of a lower degree, whenever the quotient of the common exponent of

the dividend, by the common exponent of the divisor, is exact. That

is, that a"'— If" is divisible by a" —^ i", when m is exactly divisible

by n.
„m _ ^^m

I

„"—^;".

a'"~"h" — b"' = h" (a™ " — h"' ").

Performing the division, we get a"'~" for a quotient, and l>" (a'"-"—
6"—°) for a remainder. If this remainder is divisible by a"— i", the

dividend will also be divisible by a"— l" ; for, represent the dividend

by D, the divisor by d, the quotient by q, and the remainder by R.

Then a"— h"", or J) = qd + B,. Now, qd is plainly divisible by d, and

if R be also divisible by d, the first member must also be divisible by

d, otherwise we would have the sum of two entire quantities equal to a
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fraction. Kence, in general, if the remainder is divisible by the divi-

sor, the dividend will also be divisible by it. Then, if we can prove

that the remainder, b" (a"""— b'"~°), can be divided by a"— Z>", we

can prove that the dividend can also be divided by a'— 1°. But if the

factor, a'"~°— i"""", is divisible by the divisor, h" times that factor will

also be divisible by the divisor ; and the remainder giving an exact quo-

tient, the dividend will also give an exact quotient. That is, a""—J"

will be divisible by a"— b" whenever a""""— i""" is divisible by a"—
b"; or, in other words, if the difference of the like power of two quanti-

ties is divisible by the difference of the like power of the n*"* degree,

the difference of the like powers of a degree higher by n will also be

divisible by the difference of the n**" degree. But we know that a"—
b" is divisible by itself, a°— b" ; hence, by the principle just demon-

strated, a^°— b^" mu.st be divisible by a"— b". And since a*— i*" is

divisible by a"— b", a^"— i"" must also be divisible by a"— b", and

so on, for powers of a degree greater by n, until it finally reaches and

divides a™— b'". This power must eventually be reached, because m
is supposed to be a multiple of n.

79. In Example 8, x''— y, divided by j:^— i/', the quotient was

not exact, because m or 7 was not a multiple of n or 2.

In Examples 6, 7, and 9, the quotients were exact, because in each

case m was a multiple of n.

80. It is plain thatj^a""

—

pb"" can be divided by qa"— qb" whenjj

and m are multiples of q and n. For we can put the expressions

under the form of p {a"' — b""), and q (a" — i°), and the quotient

will, of course, be exact when j^ will divide q, and a" — b"' will divide

a"— b\

Thus, in Example 18 we found Wx^— 14// divisible by Ix^— ly'^ :

the dividend can be written, 14 (x^— y), and the divisor 7 (.c^— y^,

and since 14 will divide 7, and x^— y* will divide .'-^— ?/^, the quo-

tient is exact.

81. The demonstration holds good whenever n, added to itself a cer-

tain number of times, will produce m, and is therefore true for quanti-

ties affected with negative and fractional exponents.

Divide a"'— b-' by cr^— b-\ Ans. a'^ 4- b-\

Divide o-«— i-6 by a-'— b-\ Ans. a'^ + i"^.

Divide «-«— b'' by a~^— b'". Avs. a"* + a'^'b-^+b-^.

5 D
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Divide a- — h^' by J — tl Ans. J + h\

Divide a^— l^ by a^— 5 - Ans. a + a't^ + b.

Dividea®— i'sby a*— 6*.

^«s. J + Jl^ + Jb^ + a%^ + b^-

82. II. The difference of the like powers of two quantities is divisi-

Dle by the sum of their like powers of a lower degree, when the result

of the division of the common exponent of the dividend by the common

exponent of the divisor is an even number; which is evident from the

principle of Article 50.

83. III. The sum of the like powers of two quantities is divisible

by the sum of their like powers of a lower degree, when the quotient

arising from dividing the common exponent of dividend by the common

exponent of the divisor is an odd number.

That is, «" + b"" is divisible by a" + V", when m, divided by rt, is

an odd number.

Performing the division, we will have — Z*" (a""""— J""") for a re-

mainder, and whenever the factor, a"""— i"*""", is divisible by a" + 6",

the dividend a™ + b'^ will be divisible by the same divisor. But we

have just shown that d"""— i""" can be divided by a" + Z)° when

m — n . , in — n . m
IS an even number, and smce is the same as 1,

n n 71

„ 'ni , , , . 1 . „ ???- — n .

the quotient of — must be odd in case the quotient of is even.

Hence, the truth of the proposition. Thus, in Examples 13, 14, and

15, the quotients were exact, because for each of these examples —

was an odd number. So, in like manner, x^ + a", x^ + a^, x} + a',

&c., are divisible by a; + a, and give 3, 5, 7, &c., terms in the quo-

tient, with signs alternately plus and minus.

84. IV. It is plain that the sum of the like powers of two quantities

cannot be divided by the difference of their like powers ; that is, a"' +
i" cannot be divided by a"— Z»", because it is not possible to decom-

pose the sum of two quantities into factors, one of which will be a dif-

ference between the quantities.
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ALGEBRAIC FRACTIONS.

85. A fraction is a hrohcn part of unity. The denominator denotes

the number of equal parts into which the unit has been broken or

divided, and the numerator expresses the number of these equal parts

taken. Thus, the fraction f indicates that the unit has been divided

into three equal parts, and that two of these parts have been taken. In

like manner, the fraction — indicates that the unit has been divided
b

into h equal parts, and that a of these parts have been taken.

8G. Every quantity not expressed under a fractional form is called

an entire quantity.

87. An expresssion, made up in part of an entire quantity, and in

part of a fraction, is called a mixed quantity. Thus, 4 + J, and a —
— are mixed quantities.
c

88. A proper fraction is one in which the numerator is less than the

denominator. An improper fraction is one in which the numerator is

greater than the denominator.

89. A simple fraction is one whose numerator and denominator arc

simple quantities. Thus, — is a simple fraction.

90. A compound fraction is one which has a compound expression

in the numerator or denominator, or in both. Thus, , ,
' c ^ c -\- d

and -j are compound fractions.

91. The minus sign before a fraction changes the signs of all the

terms in the numerator. Thus, is equivalent to .

b b

92. A few of the principles involved in operations upon fractions

will now be demonstrated.

I. The multiplication of a fraction by an entire quantity is effected

by multiplying the numerator, or dividing the denominator by the

entire quantity.

For to multiply — by r, is to repeat — , c times, and since — taken
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twice, is V> tlivce times is — , &c, the result of multiplyin<2; — , c times

oc
will plainly ba — . The multiplication can also be performed by divid-

ing the denominator by c ; for, if we divide the denominator by f, and

q is the quotient of the division, then the unit will be divided into c

times fewer parts than before, and, of course, each part is c times as

great as before. Now, if we write a over q, we will have taken as

many parts of the unit as before ; and since each part is c times greater,

the fraction — is plainly c times greater than the fraction —

.

The multiplication of the numerator by a whole number may also be

demonstrated in another way. — is taken to be increased c fold, and

if the denominator remains unchanged, while the numerator is multi-

plied by c, the number of parts into which the unit is divided remains

the same, but the number of those parts taken is increased c fold, the

oc
new fraction — must then be c fold greater than the old.

b

93. II. The division of a fraction by an entire quantity is effected

by dividing the numerator, or multiplying the denominator by the

entire quantity.

For, to divide -- by c, is to diminish the value of the fraction c fold,

and if the result of the division of a by c is q ; then g' is c times smaller

than a, and y- is c times smaller than — . Because, while the parts of

the unit have remained unchanged, c fold fewer of these parts have

been taken.

The division can also be effected by multiplying the denominator by

c, for then the parts into which the unit is divided being increased c

fold, the value of each part must be decreased c fold, and, of course,

when the same number of these c fold diminished parts are taken, as at

first, the result must be c times smaller than before.

94. III. The value of a fraction is not altered by multiplying the

numerator and denominator by the same quantity. The fraction -- is

not altered in value by multiplying the numerator and denominator by

c. For, to multiply the numerator by c is, from what has just been
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shown, to increase the value of the fraction c fold, and to multiply the

denominator by c is to diminish the value of the fraction c fold, and,

of course, the fraction has undergone no change of value since it has

been increased and decreased equally.

95. IV. The viilue of a fraction is not changed by dividing the

numerator and denominator by the same quantity. Because the two

divisions cancel each other, and leave the fraction in its primitive

condition.

90. Y. If the same quantity be added to the numerator and denomi-

nator of a proper fraction, the value of the fraction will be increased.

To show this, it will be necessary to show that if the same quantity

be added to two quantities differing in magnitude, the smaller of these

will be increased more, proportionally, than the larger. Take the num-

bers 1 and 2, add 1 to both, the first will be doubled, but the second

will not be ; add 3 to both, the first will be increased four fold, while

the second Avill only be 2'] times greater than before. In general, let

a and b represent the two quantities, a being less than h- add a to both,

the first will be doubled, but the second M'ill not be, because a -\- h is

loss than 2/j. Now, when the same quantity is added to the numerator

and denominator of a proper fraction, the numerator is increased more

proportionally than the denominator ; the number of parts taken, then,

is increased without their being an equal decrease in the size of those

parts. Hence, the new fraction must be greater than the old.

97. VI. By adding large quantities to the numerator and denomi-

nator, we can make the value of the fraction approximate indefinitely

near, though it can never become unity. Thus, add 1000 to the nume-

rator and denominator of i, the new fraction is j^o^' al"^os*^^> though

not quite, unity. Now, add a million to both terms of the fraction, and

the result will be indefinitely near, without being altogether unity.

98. VII. If the same quantity is added to the numerator and deno-

minator of an im]m)per fraction, the value of the fraction will be

decreased.

For, the denominator being smaller than the numerator, will be

increased more proportionally, and the value of the fraction must be

diminished.

Take | as an example, add 10, and the fraction becomes |4 <C f-

It is plain that no addition to the numerator and denominator can ever

reduce the fraction as low as unity.

5*
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REDUCTION OF FKACTIONS.

99. Tlic reduction of fractious consists in simplifying their forms

without altering their value.

Their are 10 cases.

CASE I.

To reduce a simple fraction to its simplest form.

RULE.

Strike out all the factors common to the numerator and denomi-

nator^ and the result will he the fraction reduced to its lowest terms.

m 1 «'— ^'

lake as an example, ^,

We know' the factors of a^— V^ to be (a -\- V) (a — h), hence,

7/ („_5)^„+i)
a + h a + b

— h.

The expression a, + b, being common to numerator and denominator,

may be stricken out, since, by Article 95, we can divide both terms of

the fraction by a + ^ without altering its value

n + \

We know, by Article 48, that n"" + 2n + 1 = (n + 1)', hence,

n^ + 2n +1 (n + 1) (« + 1)
, .



6. Reduce

7. Reduce

\. Reduce
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4m^ — \r?

8



m
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mi , •
— ax 4- (r

,
The result is x + —-

—

. , ,
— ax + a^

X -\' a , or simply, x -f

8. Reduce

9. Reduce

10. Reduce

X +

«' + '^ . ^^
1. Reduce Ans. a -i

.

2. Reduce ~ ^"

—

'—— ' ^
. Ans. x — a -\

a
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This case diffei-s from tlic last in two particulars, 1st, It includes

only fractious which cannot be reduced to entire quantities. 2d. The

division, instead of stopping with one term of the quotieut,Js carried

on as far as may be thought proper.

EXAMPLES.

1. Expand into a series.

Ans. 1 + 2x + 2x'' -f 2x^ + &c., indefinitely.

1 X
2. Expand into a series of five terms.

1 + X

Ans. 1 — 2x + 2x2— 2a;' + 2x'— &c.

3. Expand z into a series of six terms.

Ans. 1 — X -\- x^— x^ + X*— x^ + &c

4. Expand :; into a series.
1— X

Ans. 1 + X + x'' + x'' + X* + &G.

5. Expand —yj-ji ^^^'^ ^ series.

^ Qh' Gh' Gi"
Ans. I J + —r

g + ^c.
a a a

6. Expand = into a series.

J_ns. — a;"'— x~^— cc"'— x-*— x-^— &c.

7. Expand r into a series of five terms.
^ X -\- 1

Ans. x-' — x-^ + x-""— x-^ + x-'— &c.

x^
8. Expand ^ .^ 3

into a series.
OC uX —j- X

Ans. X + 2a;2 + ?^x^ + 4.x'' + 5.t" + &c.

). Expand
X \-y

,
27/ %f , 2f 2f ,

„



10. Expand
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4

Ans. 4x-'— 4x-V + 4x-'/ — 4.^"^^' + &t

Remarks.

103. In all these examples, since the quotient is incomplete, it is

plain that the product of the divisor by the series will not give the

dividend.

104. The different results of the same division in 4 and G, 3 and 7,

show that the series may be changed by changing the order of the

terms in the divisor; and it might readily be shown that a change in

the order of the terms in the numerator (when there is more than one

term) will produce a corresponding change in the series.

CASE V.

105. To reduce fractions having different denominators to equivalent

fractions having the same denominator.

RULE.

MuUipli/ each numerator into all the denominators, except its own,

for a new numerator, and all the denominators together for a common

denominator of all the new numerators; or, multipli/ each numerator

hy the quotient arising from the division of the least common multij)le

of the denominators hy each denominator respectively, and write the

products thus formed for new numerators over the least common multt-

jile as a common denominator.

Reduce — and — to a common denominator.
a c

By the first rule we get — and — , and it is plain that these frac-^ "^ ac ac ^

tions have the same value as at first, since each has been multiplied and

divided by the same quantity.

X h
Reduce —^ and — to a canimon denominator.
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The least commoa multiple is a^ • the quotient of this common multi-

ple by the first denominatoi' is 1, and this is, then, the multiplier of

the first numerator. The multiplier of the second numerator is — = a.
a

Hence, the equivalent fractions are — and -„ . It is plain that each

fraction has been multiplied and divided by the same quantity.

3. Reduce -^, -V; and — to equivalent fractions with a common
(r cr a

denominator.

X ay <j?h

^"'- .3'.,3^-3-

4. Reduce J, a, -^, and — to equivalent fractions having a common

denominator.

25 Aah hx^ , 4?/
^«s- 7T) -TT} Try and .'^-.W 46 ' 46 ' 46

5. Reduce h — , r ^,) and ~r to equivalent fractions withm + ?i {m -j- nj 4

a common denominator.

2 (m -f nf 4 (m + ',if (
to— n) 4 (y,^ + a")

,
(m + ?0'^

^"'-
4 (m + «)^' 4 (»7i -^if ' 4 (m + nf \{m+nf

„ ^ , « a; + a «x
. • i x ^ x- i •

6. Reduce — ,
, s to equivalent tractions havinc; a common

X a a^

denominator.
a? ax^ + a^x ay?

Ans. -2-,
^

, -5-.
o'-x a^x a^x

7. Reduce , — ,
,'— to equivalent fractions havin<j a

in — n h X ' c
°

common denominator.

hcx^ (m— n) c'^x (m — nybc (m — n)I?x

{in— n>) hex' (m— n) hex' (m — n) hex' (m— n) hex'

By reducing the above results by Case I., we will get back the ori-

ginal fractions. We can thus verify the correctness of the results

obtained.
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CASE VI.

106. To add fractional quantities top^ether.

RULE.

Reduce the fractions^ to a common denominator, if necessary , and

over this common denominator write the algebraic sum of the new

numerators.

Fractions, which have different denominators, cannot be added to-

gether previous to reduction to the same denominator, because they

represent different things. Tims, J and 1 neither make i nor | ; the

first indicates that one of the three parts into which the unit has been

been divided has been taken ; the second indicates that Ave have taken

one of the four parts into which unity has been divided.

Since, therefore, the parts taken are different iu magnitude, they

cannot be added together. It would, obviously, be just as proper to

add a peck (the fourth of a bushel) and a quart (the thirty-second part

of a bushel), and call the sum two pecks, or two quarts, as to add two

fractions with diflcreut denominators.

EXAMPLES.

-f»ii=^ />
, — C .

, X + h — C
1. Add — H , and together.

-

a a a ^

2. Add -, -f - and — -.
a a a

3. Add —V- to .

4. Add X — a -\
^1 ^,
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cc— y m ic + y c

^^^^
2mc (x' + f) + (c" + m') (a-'' — .y')

mc (.x^— ?/^)

8. Add 4 + 4.x to J + ^. ^n.. lL^+1).

9. Add 4— 4a: to 1 - -|-. ^«5. mLlZ^).

X 17 Tx— 1)
10. Add 4.r— 4 to ^ — }. Ans. —^ '-.

4 4

11. Add -^^ to .T — a H .

6 X -j- a X— a

(x + a + bx — ha) (a;^ — a^) + 2al^
Ans^

b (x' — a^)

Rcmarh.

107. When none of the terms have been reduced with each other,

the result divided by the common denominator ought to give back the

original series of fractions. This may be noticed in the first three

examples.

CASE VII.

108. To subtract one or more fractional quantities from one or more

fractional quantities.

RULE.

Mahe all the denominators the same, if the fractions have not a com-

mon denominator, then write into one sum the numerators of the minu-

end, andfrom this sum take the algebraic sum of the numerator, or

numerators of the subtrahend.

Write the difference over the common denominator.

The same reasons which show that we cannot add fractions, with

different denominators, prove that we cannot subtract fractions with

unlike denominators. The fractions represent different things until

reduced to a common denominator.
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1. Subtract -|- from y. ^ns. — —

.

2. Subtract -J from —

.

AnAns. ^.
6 2 t»

3. Required the diflference between x and -;^.

X X
Ans. -^ OT -^.

4. Take the difference between x + -— and x — -r-.

Ans. + o, or — a.

^ „ , a 4- h X „ a — h
5. Subtract — 1- -;y from —-—

i ^>
^^' + -^O /7 , NAns. — 2 ;-— , or — (^ + ^)-

6. Subtract — f- x from —-

—

Ans. — 2 ^—.— , or — (h + 2x)

7. Subtract 2x + ^ -f 4 from '^-.

3(yH-6)— 12a;— 2a— 24
Ans. --^^^^—!

—

.

8. Subtract ^^-^ from 2x4--^ + "l-

2 o

Ans.
12-^ + 2« + 24-8(y + &)

^ A ,
o -f .r - a— X

0. Subtract —-— from —^—

.

10. Subtract —^- from —f-.

11. Subtract x — — from
'

.

6 7>l

6
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CASE VIII.

109. To multiply fractional quantities together.

RULE.

]f the quantities are mixed, reduce them to a fractional form , then

mxdtiphj their numerators together for the numerator of the product

required, and their denominators together for the denominator of this

j^roduct.

Let it be required to multiply -j- by —

.

To multiply — by c, is to repeat —, c times ; the result will then

plainly be — . Because, while the size of the parts into which the unit

has been divided has remained the same, the number of parts taken has

been increased c fold. — is then, obviously, c times 2;reater than—-.

But we were not required to multiply — by c, but by the quotient ari-

sing from the division of c by d; our multiplier has then been d times

too great, and, of course, the product is d times too great. The result,

then, must be corrected by dividing by d. Hence, the true product

of — by — is —„ in accordance with the rule.
b d bd

1. Multiply 20^ + 1 by
I-.

Ans. ^J^J^,

.
2. Multiply ^^tf by ""-^

.

Ans. ''—^.

>. 3lultip]y ^— by --. Ans.
a ac

4. Multiply -~^^ by ^. Ans. —. V-X -\-
1/

x—y x^—y'



ALGEBRAIC FRACTIONS. 65

5. Multiply ^44-—'by^- f-*-

A-hs
^~^ "*" ^~'^~^~ ^~^^~'~ ^~^

r^ 4- 7/3

6. Multiply
'^ ^'^

by
x'+U'

{a

2
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Take, as an example, —- to be divided by —

.

The result of the division of — by c must be c times smaller than—.

It will then plainly be — , because, wliile tlic number of parts taken has

remained unaltered, tlie size of tlicsc parts has been diminished c fold,

since their number has been increased c fold. But we were not re-

quired to divide — by c, but by the quotient of c by d. Our divisor,

then, has been d times too lar2;e, and the result, — , of course, d times
be

too small. The error, then, must be corrected by multiplying by d.

Hence, ^—:

—

- = ^— , in accordance with the rule.
h d be

111. The demonstration is general, and is applicable when the divi-

dend and divisor are mixed quantities, or made up of several fractions

;

or, when either dividend or divisor is a mixed quantity, or composed of

more than one fraction. For the fractions, if not already under the

form of
-J-

and -— , can be put under these forms without difficulty.

The demonstration in the last case is general, for the same reasons.
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r. Divide m by — ~ — y. Am. -ir'^-^^7^—.
II a'— Ixy

^. Divide !!^^ by ^^-^V2x. Am.
"^"^^

y n {x^ + y
9. Divide 1 + ^ — 4:c by— 1— 4-' + 4.r.

o o ^l«s. — 1.

10. Divide 1 + 4^ _ 4x by + 1 — 4 + 4.t.

+ a;2— 12x
J^??s.

3— a;^ + Vlx

^^ ^. .. 2(x+y-)+a?j -
, , Cr— 7/)« + fl2^

11. Divide —^^ — h + xhx -T-.
—-^——;—

.

a -^ 4{x + y) + 2ax

Ans. 2^±^^^±^.
cr\x— y + ax

10. Divide 'i(^l+^'-l + .bj U:r + y)+ 2a.

X— y + ax
Ans. ^ .

2a + X + 2 x m + 71 x
lo. Divide

^
2o + - by -^, -.

. Ah{a + x— ch + 1^
Ans. — '-.

m -{- n— 2bx

Rcmarlis.

112. The quotient, multiplied by the divisor, ought to give the divi-

dend ; and in the last case, the product, divided by one of the factors,

ought to give the other factor. "We are thus enabled to verify our

results.

We have seen that both the numerator and denominator of a fraction

can be multiplied by the same quantity without altering the value of

the fraction. Hence, by multiplying the term of a fraction by minus

X 1
iinity, the signs of these terms may be altered. Thus, "

—

-— may be

•xi 1 — x -\- a — a ., _ — a a
written —

;

may be written =-, cvc. Hence, j = —

.

— — +6 —bo
That is, the quotient of two negative quantities is positive.

So, -

—

T, or, J
= -, read minus the fraction —

.

+ O —Ob
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CASE X.

113. To reduce a compound fraction to its lowest terms.

Wc have seen tliat a simple fraction can often be reduced by remov-

ing the factors common to the numerator and denominator. When the

common factors of a compound fraction can be detected by inspection,

we have but to remove them, and the fraction is reduced to its lowest

terms. Thus,

a'^ + ah — ac

um -\- an

can be reduced to its lowest terms by the removal of the common

factor a.

But the common factor, or common factors, of a compound fraction

cannot always be detected by inspection, and some process becomes

necessary to discover them. This process is called finding the (jrealest

common divisor.

114. The greatest quantity that will divide two or more quantities,

is their greatest common divisor.

When the greatest common divisor of the numerator and denomina-

tor of a compound fractions is found, it can be reduced to its lowest

terms by dividing by this divisor.

115. The greatest common divisor, though most usually obtained in

order to reduce compound fractions, is also frequently found between

(quantities not written in the fractional form.

IIG. We will then explain the method of finding the greatest com-

mon divisor between two polynomials, without regarding them as nume-

rator and denominator of a compound fraction.

117. The determination of the greatest common divisor of two poly-

nomials depends upon two principles. 1st. The common divisor of

two polynomials contains, as factors, all the common factors of the

two polynomials, and does not contain any other factors. For, let A
and B be the two polynomials, and D their greatest common divisor.

Now, it is plain that any quantity C, made up of a part of the common

factors of A and B, would divide both quantities, and would, therefore,

be a common divisor ; but C, multiplied by the remaining factors com-

mon to A and B, would still divide them. Hence, C would be a divi-

sor, but not the greatest divisor of A and B.

Again, any quantity M, made up of all, or a part, of the common fac-
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tors of A and B, and containing also a factor, d, not common to the

two polynomials, will not divide them. For, if we proceed to the divi-

sion, the common factors of A, B, and M will strike out, and leave the

factor (1 as a denominator of the reduced polynomials. Thus, ad will

not divide a^ -f ah and ac + am ; for, though it contains their common

factor, a, it also contains a factor d, not common. The result of the

division will be
,

and -

—

-— . The greatest common divisor, D.
a d

then, contains all the common factors of A and B, and contains nu

other factors.

118. 2d. The greatest common divisor of two polynomials, A and B,

will enter into the successive remainders which arise from dividing A
by B, and B by the remainder, and the second remainder by the first,

aud so on, until there is no remainder.

For, denote by A' and B' the quotients arising from dividing A and

B by the greatest common divisor, D ; then A = A'D, and B = B'D.

Divide A by B ; or, what is the same thing, divide A'D by B'D, aud

call the quotient Q.

Thus, A'D
I

B'D

QB'D Q

(A'— QB') D = 1st Bemaindcr = MD.

by making A' — QB' = IM.

We see that the first remainder contains the greatest common divisor;

and as it is also in the divisor, wc have a right to seek it between these

polynomials.

Now, divide B'D by the remainder, and call the new quotient (7,

and we get

B'D
I

MD
Q':md q'

(B' — Q'M) D = 2d Kemaindcr = XD,

representing B'— Q'M by it.

Wc see that the greatest common divisor enters also into the second

remainder; and as it is also in the first remainder, we have a right

to seek it between these two remainders. Divide MD byND; the

remainder, if any, will still contain the greatest common divisor.

119. Let us apply these principles in finding the greatest common

divisor of the polynomials, A and B.

First arrange them with respect to a certain letter, and regard that

polynomial which contains the highest power of this letter as the divi-
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dend, and the other polynomial as the divisor. Next, examine if A
(which we suppose the dividend) contains a factor common to all its

terms, but not common to all the terms of B. By the first principle,

this factor can constitute no part of the common divisor, and may be

suppressed. It is not absolutely necessary to suppress it, because it

will disappear in division, and not appear in the remainder, and, there-

fore, by the second principle, cannot make part of the greatest common

divisor. But if there is a factor common to all the terms of B, and not

common to those of A, it must be suppressed. For A would not be,

divisible by B until it had been multiplied by the common factor of B,

and the multiplication would make this factor common to A and B

;

and, hence, by the first principle, it must be common to the divisor.

The greatest common divisor would then contain a factor which did not

originally belong to A.

120. If there is a factor common to A and B which can be detected

by inspection, it may be divided out and set aside, as making part of

the greatest common divisor.

121. The next step, after setting aside, or suppressing factors seen

by inspection, is to divide A by B. If the coefiicient of the first term

of A is not divisible by the coefiicient of the first term of B, it may be

made divisible by multiplying all the terms of A by the coefiicient of

the first term of B, or by any other quantity that will make the division

possible. This multiplication will not efi"ect the result, because the

factor introduced into it will disappear in the division.

122. The remainder, after division of A by B, will contain the great-

est common divisor ; and, as B also contains it by hypothesis, we have

a right to seek it between B and the remainder. The second remain-

der, if any, contains D also, but its coefficient or multiplier is smaller

than in the first remainder; and so tlie coefiicient of J), in each re-

mainder, is smaller than in the preceding, until it finally becomes unity.

"When this final remainder is used as a divisor, it will go as many times

in the preceding divisor as there are units in the coefficient of D in

that divisor, and there will be no remainder.

123. When, therefore, wc get a remainder zero, we conclude that

the last divisor is D X 1, or D itself.

124. If the given polynomials have no common divisor, we can dis-

cover the fact by the same tests that show when one polynomial is not

divisible by another. We will find either that the letter, according to

which the arrangement has been made, has disappeared from some of
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the remainders, or it enters to a higher power in that remainder which

is used as a divisor than in the one used as a dividend.

The preceding principles and demonstrations for finding the greatest

common divisor lead to the following

RULE.

125. Arraivje the two polynomials with reference to a certain letter,

as in division; use that one tchich contains the highest j^oicer of this

letter as the dividend.

2d. Next, set aside the factors, if any, common to dividend and

divisor, as part of the greatest common divisor, and suj^ress those fac-

tors tohich are common to the one and not to the other.

3c7. Prepare the dividend, if necessary, for division, hy multiplying

hy any quantity that loill make its first term divisible hy the first term

of the divisor ; divide the one polynomial hy the other, and suppress

in the remainder any factor that may he common to cdl its terms and

not common to those^of the divisor.

Aih. Use the remainder so reduced as a divisor, and the last divisor

as a dividend, and proceed c(s before; and continue in tliis manner,

using eadh successive remainder as a divisor, and the last divisor as a

dividend, until tliere is no remainder, or until it is evident that the

polynomials have no common divisor.

„ , a'^cb— a^c)/ + a^b.r— a^i/.r .

lieduce — '^ '-^— to its lowest terms.
mcb + mcb + mbx + myx

a^ is common to the numerator and not to the denominator, m is com-

mon to the denominator and not to the numerator. These factors must

then be suppressed, as constituting no part of the greatest common

divisor.

Then, ch— cy + hx— yx
\
cb -f cy + hx -\- yx

cb -\- cy -f hx + yx 1 Quotient.

— 'Icy— "lyx = —2y{c-\- x).

Suppress — 2y, a factor common to the remainder and not to the

divisor.

Tlien, cb + cy -\- hx -\- yx
\

c -\- x

cb + bx ^~-\- y 2d Quotient.

cy + yx

cy + yx

+ 0.
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Hence, c -}- x is tlic greatest common divisor, and the reduced frac-

tion obtained by dividing both terms of the fraction by the G, C, D, is

«' (&—;/)

m (6 + v/)'

The factor suppressed in the first remainder might have been + 2y,

instead of— 2?/. The greatest common divisor then would have been

— c— X. And, in general, the two polynomials have two greatest

common divisors, differing in the signs of all their terms. The reason

„ , . . , . . Ad — Ad . ,. . ,

01 this IS obvious, since ^f— = ^ , the common divisor to the two
JJd — lj(t

terms of the fraction, may be either + (7, or — d.

2. Find the greatest common divisor of x^ + 4x^ + bx + 2, and

2x^-{- Sx -f 1. Prepare for division by multiplying the first polyno-

mial by 4, the square of the coefficient of the first term of the second

polynomial.

Then, Ax'' + ICr^ + 20:c -f 8 I 2:c" -f 3x + 1

4.x=^ + Cx^ + 2x
I

2x 4^5 Quotient.

10^2 + 18a; + 8

lO.x^' + 15x + 5

3:c + 3 = 3 (x + 1). Remainder.

Suppress the common factor, 3, of the remainder, and continue the

division.

2^2 + Sx4-1
\

x + 1

2x^ + 2x 2x + 1. 2d Quotient, a' -f 1 = G.C.D.

X + 1

X + 1

126. If we had multiplied, to prepare for division, by the first in-

stead of the second power of the cocfiicient of the first terra, we would

only have found one term in the quotient by the first division, and it

would have been necessary to multiply the remainder by the coefficient

of the first term to obtain a second term of the quotient. It is easier

to prepare the polynomial by multiplying by the second power of the

coefficient of the first term.

3. Reduce ,--^ ; = to its lowest terms.
6x^ — 4x- + 1

Multiply the numerator by 3' = 27, to prepare for division.



ALGEBRAIC FRACTIONS. 73

27x^ + WSz'— Slx'— 'ZlOx + 210
|

Hx^— ix + 1

21x'— 36x«+ 9x'
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6. llcduce
'-^^, ^'^„ '^"^, !^, to its lowest terms.

Ans. GCDx^— ?/l

Reduced fraction,
^"^ + ^^ +f'

+ <
c + 2

- -r, , '"'f'— 2ama; + mx^ + a^— 2ax + x^ . .

7. Ecduco 5—-r 5 to its lowest terms.
na^— Zanx + nx^

Reduced fraction,

Ans. GCB a^— 2ax +
m + 1

8. Find the GCD of 3.^*=— 3/ and 40;=* + 4/.

Ans. x^ + y^.

9. Find tlie GCD of x" \- x"— ax'' + a-x— «j; + a^ and x''— x^

— ax} + a^x; + ax— cr.

J-jis. £c^— ax -\- a-.

10. Find the GCD of a:'«— ^'^ and x^ + x^ + xif + y\

Ans. .c^ + ,y^.

11. licduce ^r —-—-— — to its lowest terms.
X? + \ax^ + Soil- + 2a^

Reduced fraction,

Ans. GCD 3? + 2ax + a\

x^ + 2o.r + a"

X + 2a

12. Reduce -5 r ; , , to its lowest terms.
x- — X + x//~^ — ,y + •'* — -^

Ans. GCD .r-2 + 3/-' 4- X.

Reduced fraction, =.
a; — 1

13. Find the GCD of .7;^ + x^_// + 1+^ + 1/ + yx-^ and x^ + yx^

+ ^'^' + y + J/= + ^•

d[?!S. a;'' + ^.

^ , ^ . :^V + 2*" + 3a; + o-y + 1 ^ . .

14. Reduce -

—

-^ = -.
—\ , ,^

to its lowest tenus.
a;^+ 2x + 1 +yx-' + ?/' + 2y

^Ihs. GCD a;-' + y + 2.

Reduced fraction, ^——^.



ALGEBRAIC FRACTIONS. 75

Eemainder in this example, 2x — y + 1 — ary — jfx = 2a; + 1

->r xy— 2xy— y— y'x = X (x"' + y -\'T)—yx (a;-' + 2 + y) =
(x—yx)(x-' + 2+y-).

Suppress factor, cc— yx.

15. Reduce :;

^——

;

~^—, ^ to its lowest terms.
1 + jy-' +

Reduced fraction,
'

a;-' + y-

Ans. GCD x + 7f.

Eemarhs.

128. The last two examples show the importance of suppressing tho

factor common to the remainder and not common to the divisor.

Greatest common divisor of three or more polynomials.

129. The foregoing principles can be readily extended to finding the

greatest common divisor of three or more polynomials. It is evident,

that if we use one of the polynomials as a divisor, and divide all the

others by it, that the remainders, if any, must contain the common

divisor of all the polynomials. Suppress, in each of these remainders,

the factors not common to the polynomial used as a divisor, and take

that remainder which contains the lowest power of the arranged letter

as the new divisor, and divide the other remainders by it; and con-

tinue in this way until we get an exact divisor; it will be the GCD
sought. To illustrate by an example, find the GCD of

a-2 + ax— 2.V— 2r(, :r^— .>• — 2, and ./'^— 2./-'— 4.r + 8.

Use x^— X— 2 as the divisor, the remainder will be

ax —X— 2a + 2, or a (x— 2) — {x — 2) = (./ — !) (x — 2),

and — a;- — 2a; + 8

Suppress the factor, a— 1, in the first remainder, and the result,

X— 2, will exactly divide the other two remainders ; hence, x— 2 is

the greatest common divisor of the given polynomials.

Again, take

x''+ax+ x + a, x'' + Sx^ + ?jx^l, and x^+ 2x''— ax^— 2ax -f .x— a.



76 ALGEBRAIC FRACTIONS.

Use the first as the divisor; tlie three remainders will he

0, — 2« (,r + 1) -f :f + 1 + d' {x + 1), aud 1a^ {x + 1)— 2a{x-\- 1),

or 0, and (..• + 1) (1 + a^— 2a), and (.« + 1) C-«'
— 2fl).

Hence, x -\- I = GCD.

3d. Find the GCD of a''— x\ a? + 2ax + a' aud (c" + 3«lr +
3ax2 4- .-r^

J.HS. a + X.

4th. Find the GCD oix^— -f, x^— f, x''— i/'% and .r^' —,?/=•.

^Ins. .x^ — 1/^.

5th. Find the GCD of .r-— 1, :r.^— l,x''— 2x + 1, and x''— Sx'

+ nx— i.

Alls. X— 1.

130. It will be seen that the GCD of any number of polynomials, as

well as for two, may have its sign changed. Thus, the last GCD may
he X— 1, or 1 — X, and so for the others.

LEAST COMxMON MULTIPLE.

131. The least common multiple of two or more quantities, is the

least quantity that they will exactly divide. Thus, the least common
multiple of 2, 4, and 6, is 12; of a^, a, and h, is a-h; of a^ + ah, I and

^/, is a^h^ + «Z/, &c. It is plain that the product of all the quantities

will be a common multiple of these quantities; that is, it will be exactly

divisible by them. Thus, 2x4x6 = 24 is a common multiple of 2,

4, and 6, but it is not their least common multiple. In like manner,

a'^h is a common multiple of a^, a, and h, but not their least common
multiple. Multiply a common multiple by anything whatever, the pro-

duct will still be a common multiple. Hence, there may bo an infinite

number of common multiples, but there can be but one least common
multiple.

132. No quantity will be divisible by another, unless it contains all

the factors of the second quantity. So, no quantity will be divisible

by two or more quantities, unless it is divisible by each, and by all the

factors of these quantities. To be the least common multiple of the

given quantities, it must contain no more factors than they contain; and

these factors must not enter to higher powers than in the given quan-

tities. Thus, abc is not the least common multiple of a and h, because
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it contains a factor, c, that they do not contain. Neither is a^b the

least common muhiple^ because the factor a enters to a higher power

than in the given quantities. The expressions abc, and a^b, are multi-

ples, but not hast common multiples.

133. If the given quantities contain a common factor, this must

enter into the least common multiple raised to the highest power ti)

which it is raised in the expressions to be divided, but it must not be

repeated.

134. It must enter to the highest power, else the multiple which we

formed would not be divisible by the expression containing the highest

power of the common factor, and it must must not be repeated, else the

multiple would not be the least common multiple.

135. From these principles we derive the following

RULE.

Decompose the given quantities into their prime factors, form a pro-

duct composed of all the factors not common, and of the highest powers

of the common factors, talcinfj care to let no factor enter more than

once. The product so formed will le the least common multiple

required.

Form the least common multiple of ax^, a^x, bx*, and a'.

Decomposing, we have a.x^, a^.x, h.x*, and a'.

Hence, least common multiple, a'^.x*.b = aVjx*.

It is plain that the common factor, a, must enter to the highest

power (the third) to which it enters in one of the given quantities,

else the multiple would not be divisible by that quantity. It is also

plain that x must enter to the highest power, and that the factor b,

not common, must also form part of the least common multiple, other-

wise, the expression coutaiuiug b would not be a divisor.

Form the least common multiple of 2, 8, 3, 9, a, a^, and 5b.

Decomposing into factors we have 2, 2', 3, 3^, a, o?, h.b.

Hence, 2'.3^.alZ».5 = 360a^i is the least common multiple required.

By inspecting the result, 2^, 3^, ha^.b, it is plain that it is the least

common multiple. It is divisible by 2, because it contains a factor 2^

;

7*
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by 8, because it contains 2^; by 3, because it contains 3^, &c. More-

over, it is the least product that will divide the given quantities, for it

is made up of the least factors that will fulfil the required conditions.

The number 2 need not be raised to the third power to divide 2, but

it must be to divide 8 ; so 3 need not be raised to the second power to

divide 3, but it must be to divide 9.

We see, too, that no factor has been taken more than once.

3d. Find the least common multiple of (a^ + ax^^, 9a'', 21, and 7ah.

A}is. 3^7 (« + .t') a^h = 63 (a + x") a^h.

4th. Find the least common multiple of ,t^— ?/, x -\- y, 7x— 7y,

and x'^— 7/\r.

Ans. 1x (.c^ — ?/^).

5th. Find the least common multiple of ?Hi^h\ 4 Qx + If, IQcc^lr,

and 40 {x + l)/>.

Ans. 3.2^5 (.r + Yfa^J? = 240 (x + 1)V/A

6th. Find the least common multiple of 2a, oa^, 4i, 5//, Gc, 7c^, 8d\

dJ, and lOahcd.

Ans. 2\B'.b.7a%'c\I' = 2520a'b\M\

CoraUarj/.

136. The least common multiple of two or more quantities can also

be found by dividing their product by the greatest common divisor.

For, in the division of the product of the quantities by their greatest

common divisor, the lowest powers of their common factors alone are

divided out, and the quotient is made up of the factors not common,

multiplied by those that are common, raised to the highest powers to

which they enter in any of the given quantities, which, as we have

seen, is the composition of the least common multiple.

137. Conversely, if we know the least common multiple of two or

more quantities, we can find their greatest common divisor by multi-

plying the quantities together, and dividing their product by the least

common multiple. For, let A, B, and C denote the quantities, D, their

greatest common divisor, and L their least common multiple. Then,

since = L, -^— = D. This relation between the greatest com-

mon divisor and the least common multiple, enables us to verify our

results iu finding either.
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LEAST COMMON MULTIPLE OF FRACTIONS.

138. It is often important to find the least common multiple of frac-

tions, and as the rule for finding it for entire quantities fails in this

case, it becomes necessary to demonstrate another nxle.

Let us take the fractions

"We arc required to find the least quantity that they will exactly divide,

and give entire quotients. Now, to divide by a fraction, is to divide

by the numerator, and multiply by the denominator. The quantity,

then, that will be divisible by one of the fractions, as -— , must be divi-
de

sible by a^, or it will not be divisible after it has been multiplied by hc^.

And, as the same reasoning may be extended to the other fractions, the

quantity sought must evidently be divisible by each of the numerators

;

and, in order to be the least quantity that will fulfil this condition, it

must be the least common multiple of the numerators. But, since the

denominators are to be multiplied by this least common multiple of the

numerators, it is plain that a^h cannot be the quantity sought. For,

rt^i, the least common multiple of the numerators, divided by any quan-

tity that will exactly divide the denominators, will be a smaller quantity

than aH> itself. For instance, — will be divisible by the given quan-

tities, and be a smaller quantity than a^b. It is plain, too, that a^b,

divided by the greatest quantity that will divide the denominators, will

still be smaller than -— , and will be the smallest quantity that will be

exactly divisible by the given quantities. Hence, -j. is the least com-

mon multiple of the fractions

6?' P?^"'^^-

RULE.

139. Find the least common multiple of tlie mimerators, and divide

it by the greatest common divisor of the denominators ; the fraction so

formed tcill be the least common multiple of the (jiven fractions.
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2. Find the least comiuou multiple of
-f^, 4^, and K-.

3. Find tlic least common multiple of

Arts. V-

8 (a' + ax')

-^3—,—-^—, and-.

Ans.

4. Find the least common multiple of

-«, oa,
y

' 9 '

5

^l?is. II0? (a-— rc^).

5. Find the least common multiple of

1 (x + ff 49 (x + 9/) 21a;2 a: + .y—3

—

>
—9—'

-2r'
^^^^

-i^r-

Ans. tm^L±J^^49(x + ,yx^.
o

6. Find the least common multiple of

8a- IBah X -f
3"' "2"' "5

73a- 7Sah X -\- 1/ ^ a
' and —

Ans. loa'h (x + ^).

The demonstration being founded upon the hypothesis, that the frac-

tions are reduced to their lowest terms, the rule is, of course, only

applicable to such fractions.

GREATEST COMMON DIVISOR OF FRACTIONS.

140. The greatest common divisor of two or more fractions is the

greatest quantity that will exactlj"^ divide them, giving entire quotients.

This quantity must be a fraction ; for nothing but a fraction will

divide a fraction reduced to its lowest terms, and give an entire quo-

tient. The greatest common divisor of several fractions will then be a

fraction itself; and since, when we divide a fraction by another frac-

tion, we divide the numerator of the fraction assumed as the dividend

by the numerator of the fraction taken as the divisor, and divide the

denominator of the divisor by the denominator of the dividend, it fol-

lows, that the divisor sought must have a numerator that will divide

each of the numerators of the given fractions, and a denominator that
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will be divisible by each of the given denominators. But, since the

value of a fraction increases with the increase of its numerator and the

decrease of its denominator, it is plain that a fraction, whose numerator

would divide all the given numerators, and whose denominator would

be divisible by all the given denominators, would not be the greatest

fraction that will divide the given fractions, unless it has the greatest

numerator and the least denominator that will fulfil the required

conditions. Or, in other words, unless its numerator is the greatest

common divisor of the given numerators, and its denominator the least

common multiple of the given denominators.

RULE.

141. Find the greatest common divisor of the numerators, and di-

vide it hij the least common multiple of the denominators ; the fraction

so formed will he the least common multiple of the given fractions.

EXAMPLES.

2a' 8a' 4a^ '^^^

1. Find the GCD of ~, ~, J?-,
and 0.(^

2. Find the GCD of
7.r' a.^- (a + .r)

12
' ;i

' -4-—' ^"'^ 2-

3. Find the GCD of ^, -y, *f-„
and ^.

d 4 12 db

4. Find the GCD ot^,^,—, and —

.

za 6 X X

5. Find the GCD of -^, -, ^^~, and ^.

7 21 3
6. Find the GCD of —-, -y, ^—t—:„ and -„.

_x- X ax -f- X' X

Ans.

Remarks.

Ans.
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other; for, though their nuniertators may be prime, as in the 3d, 4th,

and 6th examples, the least common multiple of their denominators can

always be formed.

143. We may also remark that, as the least common multiple of

entire quantities can always be formed ; so, likewise, all fractions what-

ever have a least common multiple.

144. Knowing the least common multiple of any number of frac-

tions, we can find their greatest common divisor by multiplying the

fractious together, and dividing their product by their least common

multiple.

145. Conversely, knowing their greatest common divisor, we can

find their least common multiple by multiplying the fractions together,

and dividing the product by the greatest common divisor.

EQUATIONS OF THE FIRST DEGREE.

146. An Equation is an expression containing two equal quantities,

with the sign of equality between them. Thus, cc = a— & is an equa-

tion, and expresses, that the quantity represented by x is equal to the

dilTerence of the quantities represented by a and b.

147. The part on the left of the sign of equality is called the y?rs^

member of the equation, and that on the right the second member.

148. Problems can be stated or expressed, and their solutions ob-

tained by means of equations ; that is, we can express, in algebraic lan-

guage, the relation between an unknown quantity to be found, and one

or more known quantities, and, by certain opcratioas, can find the value

of the unknown quantity.

149. The expressing the relation is called the statement of the pro-

blem; and the operation performed after the statement, to find the

value of the unknown quantity, is called the sohUion of the problem.

Thus, let it bo required to find a quantity, which, being added once to

itself, will give a sum equal to h. Let x be the unknown quantity;

then, by the conditions, x + x = b, or, 2x = b. Then, if twice x is

equal to b, x itself must be equal to half of b, raid x = — is the final

result. In tiiis, making the equation, .r -\- x = & is tlie statement,



EQUATIO-NS OF THE FIRST DEGREE. S3

and the subsequent operation is the solution. If the vakie found for

the unknown quantitity ( — j be substituted in the equation x -\-x = h,

we will have —+ — =/>, a true eqviation. When the value found

for the unknown quantity substituted in the equation of the problem

makes the two members equal to each other, the equation is said to be

satisfied, and we conclude that the solution is true.

150. The unknown quantity, the thing to be found, is usually repre-

sented by one of the final letters of the alphabet, x, i/, and z. Known
quantities are generally represented by the first letters of the alphabet,

a, I), c, and cL

151. An equation with one unknown quantity is of the first degree,

when the highest exponent of the unknown quantity in any term is

unity; of the second, when the highest exponent of the unknown

quantity in any term is two, &e.

X + a = 5 is an equation of the first degree.

x^ -\- X = a is an equation of the second degree.

x'^ -\- x^ -]- X = a is an equation of the third degree.

X* -\- px^ + mx^ + nx = a is an ef[uation of the fourth degree.

152. Equations which contain the unknown quantity from the high-

est to the first power inclusive, are called complete equations. The

above are all complete equations with one unknown quantity.

153. Equations in which some of the powers of the unknown quan-

tity are missing, are called incomplete equations, x^ = a is an incom-

plete equation of the second degree, x^ + x^ = a is an incomplete

equation of the third degree.

154. A numerical equation is one in which all the known quantities

are represented by numbers. Thus, .v^ + 2x = 4 is a numerical

equation.

155. A literal equation is one in which all the quantities, known

and unknown, are represented by letters. Thus, x'^ + ax = h is a

literal equation.

156. An equation in which the known quantities are partly repre-

sented by letters, and partly by numbers, is a mixed equation. Thus,

x^ + ax = h -\- 2 is a mixed equation.
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157. An identical cfjuatiou is one in wliich the two members differ

only in form, if they differ at aU. Thus, 2x = — , ^^^^— = x + —,

and X = X, arc identical equations.

158. An iiiJctcrminatc equation is one in which the value of the

unknown quantity is indeterminate,

159. A single equation with two unknown quantities is necessarily

indeterminate, for we must assume the value of one before we can

determine that of the other. Thus, a: -f y = 10 is an indeterminate

C(]uation, because, by assuming ?/ = 1, 5, 4, &,c., we find x = 9, 5, 6,

&c. And, by attributing an infinite number of arbitrary values to i/,

there will be an infinite number of values for x.

IGO. All identical equations are necessarily indeterminate. Thus,

the equation x = x will be true, or satisfied, when x is 1, 10, 1000, or

anything whatever.

161. The oivn sign of a quantity is the sign with which the quantity

is affected previous to any operation being performed upon it. The

essential sign is the sign with which it is affected after the operation.

Thus, multiply + « by — 1 ; the own sign of a is plus, and its essen-

tial sign minus. Eut, multiply + a by + 1, and the own and essen-

tial signs are the same. Subtract + ^ from a, then a— (-(-&) = a

— h. Here, h appears in the second member with the essential sign.

162. Since a positive quantity cannot be equal to a negative, and,

conversely, it is evident that the essential sign of the two members of

an equation must be the same.

163. Since quantities can only be equal to quantities of the same

kind, it is plain that the two members of an equation must be composed

of quantities of the same kind. Thus, if one member represent time,

the other must represent time also.

These two principles are important, and ought to be remembered.

164. Several axioms, or self-evident propositions, are assumed as the

basis of the principles by which equations are solved.

1. If equals be added to or subtracted from equals, the results will

be equal.

2. If equals be multiplied or divided by equals, the results will be

equal.
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SOLUTION OF EQUATIOXS OF THE FIRST DEGREE.

165. The transformation of an equation consists in changing its form,

without destroying the equality of the two members.

There are three transformations of equations.

First TraitKjurmatlon.

IGG. The first transformation consists in clearing an equation of its

fractions.

By the second axiom, we have a right to multiply botli nicmhers of

an equation by the same quantity ; and it is evident that if we multi-

ply the two members by the least common multij^lc of the denominators,

the resulting equation will be free of fractions. For, since each deno-

minator will divide the least common multiple, it is plain that the pro-

duct of each numerator by the least common multiple will be divisible

by each denominator. Thus, take the equation — + '-+2=4, mul-

tiply each member by 0, the least common multiple of the denomina-

tors, and the resulting equation is 3x + a^ + 12 = 24.

It is plain, that if we multiply the two members by 12, the product

of the denominators, the resulting equation will also be free from frac-

tions. For each denominator will divide the product of 12 by its

numerator, inasmuch as it will divide 12 itself. Multiplying by 12,

we get G.T + 2ic + 24 = 48. Now, divide both members by 2, which

we have a right to do by the second axiom, and we get 3x -f- a; = 12,

the same equation as before.

Again, take the equation — + — + ^ + 2 = 5.

By the first method (the least common multiple being 12), we get

i\x + 2x + ox + 24 = GO. By the second method, we get 24a; + 8x

+ 12.r + 96 = 240. Divide both members by 4, and the results are

the same. It willbe seen that the second method is the same as mul-

tiplying each numerator into all the denominators except its own, and

each entire quantity by ttie product of all the denominators.

r.ULE.

Multiplif hotli memhcrii hi/ the least common mulliple, or hrj the 'pro-

duct of the denominators.

8
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When tlu^ lonst coininon multiple cau be found without difficulty,

the first method is preferable.

S'.-cond Tramfvnnaiion.

167. This consists in transposing known terms to the second mem-

ber, and unknown terras to the first member.

Take the equation 2x— 2 = x -f- a. (1)

By the first axiom, we have a right to add + 2 to both members of

the equation. Adding, we have 2a;— 2 + 2 = a; + a-r2; or, since

the — 2 and + 2 destroy each other in the first member, the equation

becomes 2x = x -\- a -\- 2. By comparing this with the equation

marked (1), we see that 2 has passed into the second member, by

changing its sign.

Resume the equation 2x = x + a + 2, and add minus x to both

members. AYe get 2x— x = x— x + a -{- 2 ; or, since + x and

— X destroy each other in the second member, 2x— x = a + 2.

Hence, x has passed into the first member by changing its sign.

We have demonstrated that quantities can be transposed from one

member to another, provided we change their signs, since transiDosition

is nothing more than adding to both members the quantities to be

transposed, with their signs changed. The demonstration can be as

readily made by subtracting the quantities with their appropriate signs.

Hence, the second transformation is equivalent to adding to both mem-

bers the quantities to be transposed, with their signs changed, or sub-

tracting these quantities with their own signs from both members.

RULE.

Change the &!<jn of each term trans/erred from one member to

another.

Third Tranformation.

168. The third transformation consists in clearing the unknown

qitantity of its coefficient or coefficients.

Besume the equation, Qx-\-2x + ^x -\ 24 = 60; then, by the second

transformation, we have 6x -f 2x -f Sx = 60— 24 = .36. This indi-

cates that the sum of 6^:", 2x, and 2>x is equal to 36 ; hence, obviously,

llx = 36. Now, by the second axiom, we have a right to divide both
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members by the same quantity. Divide by 11, and we have x = |f

.

The unknown quantity now stands unconnected with known terms, and

we have its trae value.

Take ax -^-hx— ex = m.

By the rules for factorinir, we have (a + h— c) x = m; and by

the second axiom, x = ; .

a -\- b — c

These illustrations show that the third transformation is used when

the equation has been cleared of its fractions, if it contained any, and

when all the known quantities in the first member have been removed

to the second, and when all the terms involving the unknown quan-

tity have been placed in the first member, if not already there.

RULE.

Collect into a single algebraic sum all the corfficicnfs of the vnhioicn

quantity, and divide the two memhers hij this sum; if there is hut one

coefficient, divide both members by it.

EXAMPLES.

1. Clear the unknown quantity of its coefficient in the equation,

2.1: = 6 + c

Ans ,- = i±^'
•>

2. Clear the unknown quantity of its coefficient in the equation,

bx + 3x— ex = a.

Ans. x = .

b -\-o — c

3. Clear the unknown quantity of its coefficient in the equation,

6x -\- ax— 2x == n.

n
Ans.

b -\- a

4. Clear the unknown quantity of its coefficient in the equation,

7x + 3x + 2x = 12.

Ans. X = 1.

5. Clear the unknown quantity of its coefficient in the equation,

'2x — 7x = a.

a — a
Ans. X = r = —p .— o
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1G9. It will be seen tliat the object of the three traiisforniatious is

to free the unknown quantity of its connection with known terms, and

make it stand alone in the first member of the equation. When so

situated, its true value is known, being expressed by the second mem-

ber of the equation.

170. The various steps in the solution of an equation, can be best

illustrated by taking an example which will require all three trans-

formations.

Take • |-f ^+ fl = 6_2:r.

First step. To clear the equation of its fractions.

Result. 5x + ^x + 10a = 10Z>— 20a:.

Second step. To get the known terms to second member, and un-

known to first member.

Result bx -\- ^x + 20a) = lOi— 10a.

Third step. To clear the unknown quantity of its coefficient.

Result. X = -—^ = ~ \

171. Frequently, only two transformations are necessary in the solu-

tion of an equation ; sometimes only one, but always at least one.

Take ax -\- h = c.

r— h
By second transformation, ax ^ c— h ; and by third, x = .

Take 2x— ox = m} then, by third transformation, — x = m.

In this the unknown quantity appears with the negative sign ; but

we were required to find the value of + a; and not of— x. Multiply

both members by minus unity, which we have a right to do by the

second axiom, and — x becomes positive. Hence, x = — m is the

required value.

172. In general, when the sign of the unknown quantity is negative

in the final result, and the conditions of the problem require it to be

aflfected with the positive sign, both members must be multiplied by

minus unity.

173. We observe, also, that the signs of all the terms of an equation
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can be changed without altering the equality of the two members, since

we have a right to multiply these members by minus unity.

174. From the foregoing principles we derive, for the solution of

equations of the first degree, the following

RULE.

I. If the equation contain fractions, dear it of them hi/ vmltiplying

hath members hi/ the product of the denominators, or their least common

mtdtiple. ^

II. Bring all the terms involving the unJcnown quantity/ to the first

memher {if not already there'), and all the known terms to the second.

III. Collect into a single algebraic sum all the coefficients of the un-

knotcn quantity, and divide hoth members hi/ this sum.

IV. If the nnl-nown quantiti/ appear in the final result icith a nega-

tive sign, midiiplg both members hi/ minus unitij.

EXAMPLES.

1. Solve the equation x + 3.r— \x = 14. Ans. x = 4.

2. Solve the equation 4x -f -J^
— '—-{-—' = 50.

.Ins. X = 10.

3. Solve the equation ^ + 3.c + :^ + ^ — GO = — G.

Ans. X = 15.

4. Solve the equation 2x -\- 3x + ix— 7 = — |.

Ans. X = J.

(. CI 1 ii .' ^ X
,

X X X 24a; 176
5. Solve the equation_+-+_+ - - + _ _= —.

J d 4 12 7 <

Ans. X = 12.

6. Solve tho equation 2x + 3.x + 43-— 7 = — 4.

Ans. X = i.

7. Solve the equation ~
\- \- ox = — 4- oc + 1.

a c a
Ans. x = c.



90 EQUATIONS OF THE FIRST DEGREE.

8. Solve tlie equation ».r -\- —^ -{ 4x— 5 = n'' -f- 4 («- — 1).

Ans. X = ?i^

X
9. Solve the equation—— -\- -ix -{- h— o = 56 + 3a -f 1.

Ans. x = a -\- h.

X X X X
10. Solve the equation \- -r- -\ -, = ('Z*rc7.

a b c (I

(ahcdf
Ans. X =

Led + acd -j- al)d— ahc

11. Solve the equation -^ — -r + — + - = +
2 4 ^> 9;t a

(P^ -\- pin -f- pa -f 4/^ + 4m -{- 4«) p + « T/' + m)

4p 9?l (?

Ans. cc = p -f- ?n + a.

z
12. Solve the equation z A \- ab + a:: = m.

a

, a (in — ab)
Ans. z = --^ -!.

a' + « + 1

13. Solve the equation t/— -^ + ^+ a + b^ = a -}- -^— c.to o

— 105c

^--^-uT+sEb-

14. Solve the equation -^^ + ^ — ^ + a + 3 — 67j = 10.Sab
(7 4- GZ. — a)

Ans. y = Ga '-—- ~^.
Ida -f 6

175. A few examples follow of equations in whixih the unknown

quantity is affected with negative exi^onents, and in which the degree

of the equation is apparently higher than the first.

2.r-' -4- X — 1 2i' + 4
1. Solve the equation -; = — .

A71S. X = 2.

2. Solve the equation p 1-1 = 2.
ox " Ans. X = ^.

3. Solve the equation ^ + -— = -^—- :'.

5 5 5 Ans. x = 5.
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, ^ , ,
.

,' + 7x'— Sx 12.;;^ + 14.7;^

4. Solve the equation = -: x.

Ans. rr = 6.

a;-i X 2x~^ 1
5. Solve the equation zr-r + '—— '-^^r— = ;;—;•

.
,

G. Solve the equation x~^ -\ h — = ,

1 _ h a + 1 + ah

ax

Ans. .T = —

.

o

7. Solve the equation 1 { I + 1 + o'j + i = SOx"'.

Ans. X = 40.

X-* h c
8. Solve the Cfiuatiou ax~' \ =

f- —,•ax X
a {c— a)

Ans. X = —H
T--

1 — ab

q 1 Q

9. Solve the equation 2x-^ + —2 + -2 = ^^~^ + —2-

Ans. a; = 1

.

Gax-^ 2m
10. Solve the equation 2x~^ = —^r— H .

o X
Ans. 0: = a -{ 7n.

170. Solufions of prohhms produciuij equations of the first di^yree

with an unknoicn quantity.

It has been remarked, that the solution of a problem consist.s of two

distinct parts, the statement and the solution.

The examples just uiven, illustrate the manner of solving the equa-

tion after the statement has been made.

No general rules can be given for making the statement, which de-

pends mainly upon the ingenuity of the student.

Sometimes there is but a single thing to be determined, and in that

case, by representing it by one of the final letters of the alphabet, and

following the conditions of the problem, we get the equation or state-

ment required.

Often, however, two or more things are to bo determined, then the

undetermined quantity, upon which the other quantities depend, is re-

presented by one of the final letters of the alphabet.

As an example of the first class of problems, let it be required to

find a quantity, which, added to half itself, will give a sum equal

to 6.



92 EQUATIONS or Tin: first degree.

Let X represent the quantity, then half of the quantity will be repre-

sented by l.r, and by the conditions we liavc x -\- Jx = G. Solving

the equation, we get x = i.

As an example of the second class of problems, take the following

:

A man invests half of his money in State stocks, and a third of the

remainder in a Savings' Institution, and has four hundred dollars left.

Required the entire amount of his capital, and the amount of each of

his two investments.

Since his investments depend upon his capital, let x = capital.

placed in Savings' Institution. The remainder, after these investments,

is plainly x — (Jx -f i^) ) but this remainder is, by the conditions of

the problem, equal to four hundred dollars. Hence, x— (•].« -|- \x^

= 400. Solving, we get x = 1200.

Then, i^x = 600, Investment in State stock.

ix = 200, " in Savings' Institution.

400, The amount uninvested.

1200, Original capital.

The solution has been verified by adding the two investments to

what was left, and getting a sum equal to the original capital. The

solutions of all problems ought to be verified in a similar manner.

We have seen that an equation is said to be satisfied when the value

found for the unknown quantity substituted in the given equation,

makes the two members equal to each other

But the value of the unknown quantity in the solution of a problem

must not only satisfy the equation of the problem (the statement), but

must also fulfil the required conditions. In consequence of the use of

negative quantities in Algebra, the equation of the problem (the state-

ment), is often satisfied, when the required conditions are not fulfilled

in a strict, arithmetical sense.

As an illustration, let it be required to find a quantity, which, when
added to 4, will give a sum equal to 2. Let x be the quantity, then

•r + 4=2. Hence, x = —2. Now, — 2 will satisfy the equation

of the problem, but will not fulfil the conditions in an arithmetical

sense; for we were required to find a quantity, which, when added to

4, would give a sum equal to 2, and the quantity found is really to be

taken from 4.
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It will be seen hereafter, that there are several cases in which the

equation may be satisfied, and the conditions not fulfilled.

A farmer has two kinds of oats ; the one kind worth 80 cents per

bushel; the other 20 cents per bushel. He mixes 50 bushels of the

superior article with a certain amount of the inferior, and sells the mix-

ture at 22 cents per bushel. How much of the second quality did

he put with the first in order to make the rate of sale the same?

Let X represent the amount of the inferior article ; then, by the con-

dition, 50 . 30 -f 2Qx = (50 -H x) 22. Hence, x-= 200. In this

example, the verification of the equation and the fulfilment of the con-

ditions are the same.

2. A farmer has 50 bushels of oats, worth 30 cents per bushel, and

200 bushels, worth 20 cents per bushel. He mixes the two lots to-

gether. At what price ought he to sell the mixture ?

Let X represent the required price of the mixture per bushel; then,

50 . 30 -f 20 . 200 = 250x. Hence, x = 22.

3. What number must be subtracted from the numerator and deno-

minator of the fraction J, to make the new fraction the reciprocal of

the old ? Ans. x = 7.

4. What number must be subtracted from the numerator and denomi-

nator of any fraction — to make the new fraction, the reciprocal of the

old. Ans. X = m + n.

The solution is general, and is true for any fraction whatever.

5. What number, added to the numerator and denominator of the

fraction s, will make the new fraction 4 times as great as the old ?

Ans. X = — 3^.

What does this value satisfy ?

6. What number, added to the numerator and denominator of an_\

fraction — , will make the new fraction 4 times as great as the old ?
11

°

Ans. X =
•4m

7. What number, added to any fraction — , will give a sum equal

to the numerator.
^

m (n — 1)
Ans. X = —^^

.



94 EQUATIONS OF THE FIRST DEGREE.

8. What number, added to any fraction — , will give a sum equal to

the denominator

?

. n' —m
Ans. X = .

n

In what case will this result fall to satisfy the conditions of the

problem ?

9. What number, multiplied by any fraction — , will give a product

equal to the sum of the numerator and denominator?

_ (m 4- n) n

m
How may the last four results be made applicable to any fraction

whatever ?

10. In a square floor of a college building there is a certain number

of brick ; if one more brick is added to each side of the floor, and the

square form be preserved, there will be 61 more brick than at first.

How many brick does the floor contain? Ans. x^ = 900.

11. Two pipes lead into a reservoir capable of containing 160 hogs-

heads of water. The first pipe can fill it in 16 hours, and the two to-

gether in 12 hours. In what time can the second alone fill it ?

Ans. X = 48 hours.

12. Two travellers travel at the same rate, the one starting before

the other
J

at 12 o'clock the first has travelled 4 times as far as the

second, but when they had each gone 15 miles further, the entire dis-

tance passed over by the first was only double that of the second.

Eequired these distances. Ans. 45 and 22 J miles.

12. The sum of two numbers is a, and their diiFerence h. Required

the two numbers.

Ans. The greater, 7^+7^, the smaller — — —

.

AVe see from this result that, knowing the sum and difference of two

quantities, we get the greater by adding the half sum to the half diffe-

rence, and the less, by subtracting the half difference from the half

sum.

This formula is of extensive application, and ought to be remem-

bered.

13. A Californian gold digger wishes to sell a vessel full of gold

mixed with sand. The vessel, when filled with gold, will weigh ten

pounds, and when filled with sand, one pound; the mixture weighs seven

pounds. How much gold is in it ? Ans. Q-^\ lbs.
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14. The railing around the altar of the Cathedral in the City of

Mexico is a composition of gold and silver. Assuming that 279 pounds

of the composition loses 20 pounds when immersed in water, and that

19 i pounds of gold lose one pound in water, and 10^ pounds of silver

lose one pound in water. Required the proportion of gold and silver

in the alloy. Ans. Gold : Silver : : 156 : 123.

15. Two men purchase together a barrel of flour, weighing 196

pounds, for 5 dollars ; the first pays half a dollar more than the second.

How ought they to divide the flour ?

.4ns. The first oudit to have 1074 lbs, the second 881.

GEOMETRICAL PROPORTION.

177. Ratio is the quotient arising from dividing one quantity by

another of the same kind. Thus, if M and N represent quantities

of the same kind, then — expresses the ratio of M to X.

Four quantities, M, N, P, and Q, are said to be proportional when

the ratio of the first to the second is the same as that of the third to

the fourth.

Thus, 04, 8, 10, and 2 constitute a proportion, because the first,

divided by the second, is equal to the third divided by the fourth.

The proportionality of four quantities, M, N, P, and Q, is expressed

thus, M : N : : P : Q, and is read, M is to N as P is to Q.

The first and last terms of a proportion are called the extremes ; the

second and third the means. Of four proportional quantities, the first

and third are called antecedents ; the other two, consequents. Of three

quantities, M, N, and P ; when M : X : : N : P, then X is said to be

a mean proportional between M and P; and X is, at the same time,

antecedent and consequent.

Two quantities, M and X, are said to be reciprocally proportional,

when the one increases as fast as the other diminishes. One of the

quantities must be equal to a fraction with a constant numerator, and

with the other quantity for its denominator.

4

X
tional.
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Equi-multiples of two quantities are the products wliicli arise from

multiplying tlicm by the same quantity. Thus, aJI and oN are equi-

multiples of M and N. the common factor being a.

Theorem I.

If four quantities are in proportion, the product of the extremes will

equal the product of the means.

]M P
Foi', when M : N : : P : Q, we know that — = — ; and by clearing

of fractions, MQ = PN..

This theorem furnishes an important test of the proportionality of

four quantities. Whenever the product of the extremes is equal to

that of the means, the proportion is true ; and when that is not the

case, it is a false proportion.

Theorem II,

178. When the product of two quantities is equal to the product of

two other quantities, two of them may be taken as the extremes, and

two as the means of a proportion.

For, suppose ]MQ = NP, divide both members by QN, the first mem-

M P MP
ber will become — , and the second — , and we have — = —

. From
IN \^ li Vc^

which we get the proportion INI : N : : P : Q.

Let 2 . 4 = 8 . 1. Then 2 : 8 : : 1 : 4.

Theorem III.

179. The square of a mean proportional is equal to the product of

the other two terms of the proportion.

For, from the definition of a mean proportional, we have M : N : :

N : P ; hence, by Theorem I., N^" = MP.

Let 2 : 4 : : 4 : 8. Then 4^ = 2 . 8 = 16.

Theorem IV.

180. W^hen four quantities are in proportion, they will also be in

proportion by alternation ; that is, when antecedent is compared with

antecedent, and consequent with consequent.

For, let M : N : : P : Q; then, by Theorem I., MQ = NP, and
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dividing tliis equation, member b}' member, by PQ, we get 1^ = j^

,

from whicb M : P : : N : Q.

Let 4 : 8 : : 12 : 24. Then, also, 4 : 12 : : 8 : 24.

Theoiiem V.

181. When four quantities arc in proportion, they will be in propor-

tion when taken inversely/; that is, when the consec^uents take the

place of antecedents, and tlic antecedents the place of consequents.

Let M : N : : P : Q; then, also, we have MQ = XP, or NP = MQj

divide both members by ^MP, and we get ^ = — , from which X :

M : : Q : P.

Theorem VI.

182. If four quantities are in proportion, they will be in proportion

by composition ; that is when the sum of antecedent and consequent is

compared with either antecedent or consequent.

M P
Let M : N : : P : Q; thcn^ also, ^ = — . Add 1 to both membei-s,

, ,
M + X P +Q

and reduce to a common denominator, and we have —r^:— = —--r—

,

from which we get jM + X : N : : P + Q : Q.

Let 4 : 12 : : 8 : 24. Then 4 -f 12 : 12 : 8 + 24 : 24.

In like manner it may be shown, that when M : N : : P : Q, that

we will also have M + X : :M : : P + Q : P-

Theorem VII.

183. When four quantities are in proportion, they will also be in

proportion by division ; that is, when the difference of antecedent and

consequent is compared with either antecedent or consequent.

M P
Let !iM : X : : P : Q ; then, also, we have — = — . Subtract 1 from

X Ki

both members, and reduce to a common denominator, we will have

M— N P— Q
j^

= —T^, from which we get 31 — X : X : : P— Q : Q.

Let 12 : 4 : : 24 : 8. Then 12 — 4 : 4 : : 24 — 8 : 8.

It may be shown in like manner, that when four quantities are in

7 o
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proportion, M : N : : P : Q, tluxt we will also liave M — N : M
P— Q:P.

Let 12 : 4 : : 24 : 8. Then, also, 12— 4 : 12 :: 24 — 8 : 24.

Theorem VIII.

184. Equi-multiples of any two quantities are proportional to the

quantities themselves.

For, take the identical proportion, M : N : : IM : N ; then MN =
NM. Multiply both members by in, and there results mM . N =
mN . M ; and, since mM and ?>iN may be regarded as single terms, we

have from Theorem 2d, M : N : : mM : mN.

Let 1 and 2 be multiplied by the same number, 3 ; then 1.2::
1.3:2.3: or 1 . 2 : : 3 : 6.

Theorem IX.

185. If equi-multiples of the antecedents of four proportional quan-

tities, and also equi-multiples of the consequents be taken, the four

resulting quantities will be proportional.

For, let M : N : : P : Q ; then MQ = NP. Multiplying both mem-

bers by inn, and there results mM . «Q = «N . 5»P. Hence, mM :

tcN : : mP : iiQ.

Let 1 : 2 : : 4 : 8, and take m = 4, and n — 3.

Then 4 . 1 : 3 . 2 : : 4 . 4 : 3 . 8 ; or 4 : 6 : : 16 : 24.

It is plain that the above theorem is equally true when m = n. So,

that all the terms of a proportion may be multiplied by the same quan-

tity without destroying the proportionality of the terms. An infinite

number of proportions may then be formed from a single proportion.

Theorem X.

186. If there be two sets of four proportional quantities, having two

terms, the same in both, the remaining terms will constitute a pro-

portion.

Let M : N : : P : Q.

M : N : : R : S.

Then, MQ = NP, or NP = ^^IQ.

MS = NR and NR = MS.
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P Q
Dividing these equations member by memocr, we get —- = —

-, from

which, P : R : : Q : S, or P : Q : : R : S. (Art. 180).

And the same property can evidently be shown when any other two

terms are equal.

Let 1 : 2 : : 4 : 8.

1 : 2 : : 6 : 12. Then 4 : G : : 8 : 12, or 4 : 8 : : (i : 12.

Let 1 : 2 : : 4 : 8.

1 : 3 : : 4 : 12. Then 2 : 3 : : 8 : 12, or 2 : 8 : : 8 : 12.

It will be seen that the corresponding terms of the proportion must

be taken in connection with each other.

Theorem XI.

187. Of four proportional quantities, if the two antecedents be aug-

mented or diminished by quantities which are proportional to the two

consequents, the resulting quantities will be proportional to the con-

sequents.

For, let M : N : : P : Q.

N : Q : : R : S.

Then, MQ = NP. (A).

NS = QR.

Or, QR = NS. (B).

Adding and subtracting (B) from (A), there results Q (M =b R) =
N (P d= S). Hence, 31 ± R : P ± S : N : Q.

Let 1 : 2 : : 4 : 8.

And 3 : 6 : : 4 : 8. Then 1 =b 3 : 2 d= 6 : : 4 : 8.

It can be shown in like manner, that if the two consequents be aug-

mented or diminished by quantities, which are proportional to the

antecedents, the resulting quantities Avill be proportional to the ante-

cedents.

The reciprocal of a ([uantity is unity divided by the quantity ; thus,

the reciprocal of A is -r-

.

A

Theorem XII.

188. Two quantities are inversely proportional to their reciprocals.

For, take the identical proportion A : B : : A : B ; then AB = BA.
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Divide botli members by AB ; then

Hence, A : B : : - : -. Thus, 2 : 3 : : -J : ^.
j> A

Theorem XIII.

189. If there are any number of proportions having the same ratio,

any one antecedent will be to its consequent as the sum of all the ante-

cedents to the sum of all the consequents.

For, let M:N::P:Q.
M : N : : A : B.

M : N : : C : D.

M : N : : E : F. J

Tlien, MQ = NP.

MB = NA.

MD = NC.

MF = NE.

Adding these equations member by member, we get M (Q + -Tj +
D + F) = N (P + A + C + E).

Hence, M:N::P + A + C+E:Q + B + D-fF.

Let 1:2
1 :2

1 :2

Then, 1 : 2 : : 4 -f 6 + 8 : 8 + 12 + IC), or 1 . 2 : : 18 : 30.

It is not necessary that the first antecedent and consequent of each

proportion should be M and N; all that is required is, that they have

the same ratio ; for, then, we can substitute SI and N for them, and

the above demonstration becomes applicable. To show our authority

for this substitution, take the two proportions,

M : N : : P : Q, and E : S : T : U.

II T
From the second, we get RU = ST, or — = — ; and, since, by hy-

Pi M M T
pothesis, TT = ^, there results — = —

. Hence, M : N : : T : U.
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When we have any number of proportions, like those marlied A,

having a common ratio, we can obviously form a continued proportion

from them.

Thus, M : N : : P : Q : : A : B : : C : D : : E : F.

So, also, 1 : 2 : : 4 : 8 : : G : 12 : : 8 : 16.

The character : : is written before each new antecedent, and refers

it and its consequent back to the first antecedent and consequent.

It is obvious that any antecedent may be repeated any number of

times, provided, that its consequent is repeated the same number of

times ; and, also, that any consequent may be multiplied or divided by

HDything whatever, provided, that the same operation be performed on

its consequent.

Thus, M : N : : P + A + + P: : Q + B -f T) + F,

may be written,

M : N : : P + A + A + C + mE : Q + B + B + D + m¥,

without altering the truth of the proposition.

Thus, let 4 : 8 : 6 : 12, and 4 : 8 : : 5 : 10.

Then, 4 : 8 : : + 5 : 12 + 10, and 4 : 8 : : 6 + 5 + o : 12+ 10+ 10.

And also, 4 : 8 : : 6 X + 5 + 5 : 12 X 9 + Id + 10.

Theorem XIV.

190. If four quantities are in proportion, the sum of the first ante-

cedent and consequent will be to their difference as the sum of the

second antecedent and consequent is to their difference.

For, since M : N : : P : Q, it follows that MQ= NP.

Add NQ to both members, then Q (M + N) = X (P + Q).

Subtract XQ from both members, then X (P— Q) = Ql— X) Q.

Multiplying the two equations together, there results

(M + X) (P— Q) :=. (P + Q) (M - X).

From which we get M + X^ : M— X : : P + Q : P— Q.

Let 2 : 6 : : 8 : 24.

Then 2 + 6 : 2— 6 : : 8 + 24 : 8 — 24, or 8 : — 4 : : 32 : — 16.

9*
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Theorem XV.

191. If there are any number of proportional quantities, a single

proportion may be formed from them by multiplying together the cor-

responding terms of all the proportions.

For, let M : N : : P : Q.

A : B : : C : D.

E : F : : a : H.

Then, MQ = NP.

AD = BC.

EH = FG.

Multiplying these equations, member by member, we get

(MAE) (QDH) = (NBF) (PCG).

Hence, MAE : NBF : : PCG : QDH.

Let 1 : 2 : : 4 : 8.

3 : 1 : : 9 : 3.

5 : 10 : : 2 : 4.

Then, also, 15 : 20 : : 72 : 9G.

Theorem XVI.

192. If four quantities are in proportion, their like powers will be

proportional.

For, let M : N : : P : Q.

Then, MQ = NP.

Squaring both members, M'^Q^ = N'P'.

Hence, M^ : N^ : : P^ : Ql

In like manner it may be shown that M'" : N" : : P™ : Q"".

Let 1 : 2 : : 4 : 8.

Then, also, 1- : 2^ : : 4" : 8^ or 1 : 4 : : 16 : 04.

Likewise, 1= : 2^ : : 4^ : 8^ or 1 : 8 : : 64 : 51 2.

And similar proportions can be obtained for the 4th, 5th, &c.,

powers.
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General Remarlcs.

193. All the foregoing theorems have been deduced from the first

two ; and it is obvious that an infinite series of proportions might be

deduced from them. The test of the truth of any proportion deduced

directly or indirectly from the first two theorems, is the product of the

extremes being equal to the product of the means. Thus, if

M : N : : P : Q; then, also, M + 4 : P + 4 ^ : N : Q.

For, by multiplying tlie extremes and means together, we have

]MQ -f 4Q = NP + 4Q,

which is a true equation when MQ = NP. In general, no propor-

tion is false, however absurd it may seem, when the product of the

extremes is equal to the product of the means. Thus, \ : x* : : x~* : 1

is a true proportion, because the pi-oduct of the extremes is equal to

unity, and that of the means also equal to unity.

The proportion M : N : : P : Q, gives MQ = NP, from which we

can get the four equations

M
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104. In tlie equation MQ = NP, resulting from the proportion

31 : N : : P : Q, if three terms are known, it is plain that the fourth

term can be found by solving the equation with reference to it. In

the Single Rule of Three of Arithmetic, three terms are given to find

the fourth. Thus, suppose the first three terms of a proportion are 3,

4, and G. The fourth term can be found from the proportion 3:4::
6 : ,r. Hence 3.r = 24, or x = S, and the complete proportion is

3 : 4 : : 6 : 8. So, likewise, let the first three terms be a, b, and c,

then the fourth results from the proportion, a : h : : c : x. Hence,

.( = — . And we see that the fourth term can be found by multiply-

ing the second and third together, and dividing their product by the

first.

If the first, or either of the middle terms is unknown, we have only

to represent the unknown term by x, form the equation from the pro-

portion, and then solve it with reference to x.

Let the last three terms of a proportion be a, h, and c, to find the

first. We have, then, x : a : : b : c. Hence, x = —

.

c

So, we see that either extreme can be found by multiplying together

the means, and dividing their product by the other extreme.

Let the second term be unknown, and the other three be a, b, and c.

Then a : x : : b : c. Hence, a; = y. Let the third term be unknown,

and the other three be a, b, and c. Then a : b : : x : c. Hence, x .—

— . We see that either mean may be found by multiplying the ex-

tremes together, and dividing their product by the other mean.

EXAMPLES.

1. The first term of a proportion is a^; the third, c^; the fourth, ml
What is the second term ?

Ans. —~.
c

2. The first term of a proportion is o">+"5 the second, a-° ; the

fourth, o""". AVhat is the third term ? Ans. a'".

3. The three last terms of a proportion are a"", £% and (aby^ What
is the first term ? Ans. a~^b~\
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4. Given the first three ternit; of a prcportiou, a^— W^ a -\- b, and

a — b, to find the fourth term. A7is. 1.

5. Given three finst terms of a proportion, a', i"", and c"", to find the

fourth. \ Ans. b''c'^a~'.

PROBLEMS IX GEOMETRICAL PROPORTIOX.

195. 1. Two numbers are to each other as 2 to 3; but, if 8 be

added to both, the sums thence arising will be to each other as 4 to 5.

What are the numbers ? Ans. 8 and 12.

Let X = smaller, then the greater will be %x. For, 2 : 3 : : a- to

fourth term |x. Then .r + 8 : -|a; + 8 : : 4 : 5.

2. An author can write 240 pages in ten weeks : how many can he

write ii\12J weeks? Ans. 300 pages.

3. Two quantities are to each other as a is to J; but, if c be added

to both of them, the resulting sums will be to each other as d to c.

What are the quantities ?

. (e— J) or
,
(e— d) be

Ans. ~- — and \-^ —

.

ua— ae bd— ae

4. An author can write a pages in h weeks : suppose that he writes

uniformly, how many pages can he write in c weeks ?

Ans. X = — pages.

What values must be given to the letters in order to make Examples

3 and 4, the same as 1 and 2 ? How can the results in the last two

examples be verified ?

5. A father's age is now 3 times that of his son, but in 10 years

more the father's age will only be double that of the son. What are

their respective ages now ? Ans. Father, 30; son, 10.

6. A father's age is now a times greater than that of his son ; but

in b more years the father will only be c times older than his son.

What arc the respective ages of father and son ?

Ans. Father, ^^ ^
; son, —

.

a — c a — c

7. A gcntl,^:;i;ui puts out liis money at a certain rate of interest, and

derives $500 income. He puts the same sum out a second year, one

per cent, more advantageously, and derives 6600 from it. What are

the two rates of interest ? A7is. 5 and 6 per cent.
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8. The governor of a besieged town has provisions enougli to allow

each of the garrison 1* pounds of bread per day, for GO days; but, as

he learns that succor cannot be expected for 80 days, he finds it neces-

sary to diminish the allowance. What must the allowance be ?

Ans. IJ lbs. per day.

9. A gentleman, who owns 20 slaves, had laid in a twelve-months'

supply for them, when he purchased 10 more. How long will his sup-

plies last? A)is. 8 months.

10. A planter, who knows that his negro-man can do a piece of work

in 6 days, when the days are 12 hours long, asks how long it will take

him when the days are 15 hours long. Ans. 4 days.

11. Three negroes can hoe a field of cotton in 7 days : how long will

it take 4 to do the same work? Ans. 51 days.

12. A family of 5 persons use a barrel of flour in C weeks : how
long will 2 barrels last 7 persons, using it at the same rate.

Ans. 8 1 weeks.

13. Two farmers purchase a piece of land for $1000; whereof the

first pays $600, and the second $400, and sell it again for $1200.

What proportion of the pi'ofit ought each to receive ?

Ans. The first, $120; the second, $80.

14. A bookseller purchased a certain number of books at the rate of

2 for a dollar, and also an equal number at the rate of 3 for a dollar,

and sold the whole at the rate of 5 for 3 dollars, and gained $22 by

the sale. What was the entire number of books he bought and sold ?

A71S. 120.

15. The hour and minute hands of a clock are together at 12 o'clock.

When will they be together again ?

Ans. 5j^Y
minutes past one o'clock.

Let X be the space after one passed over by the hour hand before

being overtaken by the minute hand. Then, 12 : 1 : : 60 -f- a- : .x.

16. Two pedestrians start from the same point at the same time, to

walk around a race-course a mile in circumference. The first walks

11 yards in a minute, and the second 34 yards in 3 minutes. How
many times will the first have gone around the track before he is over-

taken by the second ? Ans. 33 times.

17. A brick-mason has brick 9 inches long, and 4^} inches wide,

with which to build a wall 112^1 feet long. He wishes to place 180

bricks in a row, and to lay some of them with their ends to the front
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as headers, and some of them lengthwise as stretchei-s. How many

headers and how many stretchers must there be in each row?

Ans. 60 headers, and 120 stretchers.

18. A brick-mason wislies to place twice as many stretchers as

headers in a wall 105 feet long. How many of each kind must he use,

supposing the dimensions of the brick the same as in the last problem ?

Ans. 112 stretchers, and 56 headers.

19. A Freshman recited 5 times a week in mathematics, and his

average for the week was 66. His average for the first three days was

to the average for the last two as 7 to 6. What were those averages?

A)u. 70 and 60.

20. Three farmers purchase 900 acres of land for S9000 ; of which

the first pays $2000, the second 83000, and the third S4000. What

share ought each to get, supposing that the land is equally valuable

throughout ?

Ans. The first, 200 acres ; the second, 300, and the third, 400.

21. A composition of copper and tin, containing 50 cubic inches,

was found to weigh 220 7 ounces. Assuming that a cubic inch of

copper weighs 4-66 ounces, and that a cubic inch of tin weighs 3-84

ounces, what must have been the relative proportion of tin and copper

in the composition? Ans. Tin to the copper as 1 to 2i.

NEGATIVE QUxVNTITIES.

19G. Quantities are con.sidered as negative Avhcn opposed, in charac-

ter or direction, to other quantities of the same kind that are assumed

to be positive.

If a ship, sailing at the rate of 10 miles per hour, encounter a head-

wind that drives it back at the rate of 8 miles per hour, then its rate

of advance will plainly be expressed by 10— 8 miles per hour. Here

the retrograde movement, as opposed to the forward, is considered

negative. Suppose the wind to increase in violence until the ship is

carried back at the rate of 12 miles per hour. Then its rate of advance

will be expressed by 10 — 12, or — 2 miles per hour. The ship will

then plainly be carried back at the rate of 2 miles per hour, and we

see that the minus sicn has indicated a chamre of direction.
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If a man be now thirty years old. His age, four years hence, will

be expressed by 30 + 4. Four years ago, it would have been ex-

pressed by 30— 4. Here, future time being positive, past time is ne-

gative. And we sec that a change of character is again indicated by

a change of sign.

If a man's money and estate be represented by a, and his debts by

h; then a — h will express what he is worth. His debts, as opposed

to his property, are considered negative. If h be greater than a, then

a— Z> is negative ; and we commonly say that the man is worth less

than nothing. We see that there has been a change of sign in the

expression for what the man was worth, corresponding to a change in

the estimation of that worth. When the worth fell below zero, its ex-

pression became negative, because regarded as positive when above

zero.

If a man agree to labor for two dollars a day, and to forfeit one

dollar for every day that he is idle ; and he labor 4 days, and is idle 2

;

then his wages will ^e 4 x 2 + 2 (— 1), or 4 x 2 — 2 ( -f- 1) = 8—

2

dollars. We see that we have regarded as negative either the for-

feiture, as opposed to the gain, or the working days as opposed to the

idle.

Distance, regarded as positive, when estimated in one direction, must

be considered negative when estimated in a contrary direction.

A B C

Let a distance, AB, estimated towards the right from the point A,

be represented by -f- m ; and let a distance, BC, estimated towards

the right from the point B, be represented by -f ?i.

Then, AC=:AB -f BC = TO + «.

Now, suppose the point C be made to fall between A and B.AC B

Then, AC = AB— BC = m — n

.

And we see that the expression for BC has become negative, and

that this change of sign corresponds to a change in the direction of

BC. It was first estimated towards the right from B; it is now esti-

mated towards the left from B.
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Now, suppose BC be made greater than AB, tlieii the point C will

fall on the left of A.

C A B_

And m — n, the expression for AC, will become negative. And we

see that the expression for AC, which was positive by hypothesis when

the distance was estimated on the right of A, has become negative

when the distance is estimated in a contrary direction.

197. The question now arises, as to what interpretation is to be put

upon a negative result when it appears in the solution of a problem.

Let it be required to find a number, which, when added to 6, will

give a result equal to 4.* Then, from tlic conditions, we have the

statement cc + 6 = 4. Hence, x ^= — 2. Now, the problem is

purely arithmetical, and in arithmetic all numbers are regarded as posi-

tive. Therefore, the solution is absurd in an arithmetical sense, but it

is true in an algebraic sense. For substituting — 2 for a; in the equa-

tion of the problem, we have — 2 -f 6 == 4, a true equation. The

value satisfies the equation of the problem. It is, therefore, a true

answer to the problem in an algebraic sense. But it is not a true

answer to the problem as stated, for we were required to find a number,

which, when added to 6, would give a sum ecjual to 4 ; and we have

really found a number which, srdjfracfed from 6, gave a difference

equal to 4. The negative solution has then satisfied the equation of

the problem, but has failed to fulfil the conditions as enunciated. The

explanation of this difficulty is simple, when we return to the interpre-

tation put upon a negative quantity. We have said that a negative

quantity always indicates a change of direction or character. That

change must be marked by a corresponding change of condition in the

statement of a problem, and then the negative solution will be changed

into a positive one. The preceding problem must be changed into this

:

required to find a number, which, when subtracted from 6, will give a

difference equal to 4.

Then, G — ./ = 4, and x = + 2.

A negative solution will not, then, satisfy a problem as enunciated,

but will be the true answer to another problem in which there has been

a change of condition corresponding to the indicated change of charac-

ter. But negative solutions can be best explained by the discussion of

the " Problem of the Couriers."

10
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PROBLEM OF THE COURIERS.

198. Two couriers travel on the same road ; the forward courier at

the rate of h uiilcs per hour, and the rear courier at the rate of a miles

per hour. At 12 o'clock they are separated by a distance of m miles.

The problem is, to determine how much time will elapse before they

are together, and also the point of meeting.

Let the indefinite line

A BO
represent the road on which they are travelling ; A, the position of the

rear courier; B, of the forward courier at 1^ o'clock; 0, the unknown

point of meeting, and x the required time of meeting. Then, from the

conditions of the problem, ax = AO, hx = BO, and AB =r m ; and

since, from the figure, we have, AO— BO = AB — m, we get the

statement, ax— hx^=m. Hence, ,r = -. The distance they

are apart at 12 o'clock, divided by the difl"erence of their rates of travel,

will give the number of hours that must elapse, after 12, before they

are together. The time, multiplied by the rate of travel, a, will give

the distance, AO, from A to the unknown point of meeting ; or the

time, multiplied by the rate h, will give the distance, BO. If, for in-

stance, they are separated by a distsince of 48 miles at 12 o'clock, and

the forward courier travels at the rate of 4 miles per hour, and the rear

courier at the rate of 6 miles per hour, then, m = 48, a = 6, and

48
h = 4. Hence, x = -—^—7 = 24 hours, ax := Q . 24 = 144 miles

b— 4

= AO. ia; = 4 . 24 = 96 miles = BO. Verification, AB + BO
== 48 + 96 = 144 = AO.

We might make AO the unknown quantity, and call it )/ ; then, BO

= y— m. Then, — , the distance the rear courier will have to travel,

divided by his rate of travel, will give the time that must elapse before

he will overtake the forward courier. So, '

—

-— will give the time that

the rear courier will be travelling before he is overtaken. And, since

these are but difi"erent expressions for the same time, we get the equa-

tion ^- = — . Hence, y = j ; and supposing, as before, that
li a a— u
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G . 4Sa= Q, l> = A, and ??i = 48, we have _y = AO = -r-—7 = 144 miles.

Then, — = --- = 24 hours, as before.
a b

199. We will confine our discussion mainly to the expression, .r =
-, in which x represents the unknown time. Since the value of

a fraction increases as its denominator decreases, it is evident tjiat, by

making the difference between a and b very small, we can make the

time veiy great. This is apparent, too, from the problem ; for, if the

rear courier travel but little faster than the forward, he will gain but

little upon him. Now, if the denominator be made the smallest possi-

ble, the fraction will be the greatest possible. Hence, when the deno-

minator is zero, which results from making b = a, the fraction must

have the greatest possible value; or, in other words, an infinite value.

Therefore, x = — = infinity, synabulizcd by the character 00 . It will

then be an infinite time after 12 o'clock before the couriers will be to-

gether; that is, they will never be together. This is plain, from tho

nature of the problem ; for, if the couriers are separated by a distance

of m miles at 12 o'clock, and travel at equal rates after 12, they must

always keep at the same distance of m miles apart.

The character 00 , then, indicates impossibility. "Whenever it ap-

pears, by examining the equation of the problem, we will discover an

absurdity arising from the hypothesis that gave the infinite result. In

this ease, infinity was the result of the hypothesis, a = b. "When

a = h, ax is equal to bx, or AO = BO : a part equal to the whole,

which is absurd.

TThe character :» , then, indicates two distinct things, viz. : impossi-

bility in the fulfilment of the required conditions, and absurdity in the

conditions themselves.

200. Now, let b become greater than a, the denominator of the value

of X becomes negative, and the whole fraction negative. "What docs

this solution mean ?

The sign of the time being minus, indicates that it refers to past

time, because in the statement we regarded future time as positive.

It is plain, also, from the nature of the problem, that the time of the

couriers' being together, if together at all, must be past, not future.

For the forward courier travelling more rapidly than the rear courier,
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will never be ovcvtr.ken by him. The solution, then, fliils to apply to

the problem as enunciated ; but it is a true solution for another ques-

tion, viz. : how long before 12 o'clock were the two couriers together '{

Lot us return to the particular problem : making h = instead of

a = C. Then, m = 48, a = -1, h = G, and x = ^^ = — 24.
a — h

Now, it is obvious, that the forward courier, gaining two miles per hour

on the rear courier, must have been with him 24 hours before 12,

otherwise the two would not be separated by 48 miles at 12.

_, . . . ,. cini
Eeturning to the equation in distance, y = -, we see that the

distance, AO, also becomes negative under the hypothesis of a<^h.

This solution indicates impossibility for a point in advance of B, be-

cause, when a <^ h, ax is also <^ bx, or AO <^ BO, which is absurd.

But it will be a true solution for a point in rear of A.

A B

Because, for such a point, the relation ax <^ bx will be true.

Resuming the values m = 48, a = 4, and i = G, we get y = A(J

=r— 96 miles ; which agrees with the solution above, for the courier

A, 24 hours before 12 o'clock, being at 0, must be 96 miles from

at 12.

When the unknown quantity was time, we have seen that the nega-

tive solution indicated impossibility for future time, but gave a true

answer to the question in past time. When the unknown quantity was

distance, the negative solution indicated impossibility for forward dis-

tance, but gave a true answer to the question in distance estimated%iu

the opposite direction. In general, a negative solution indicates that

the problem, as enunciated, cannot be solved, but gives a true solution

when the unknown quantity is changed in character or direction.

That being the case, a negative solution may always be changed into

a positive solution by changing the character or direction of the quan-

tity that produced the negative result. The negative soKition, ;<: =
-, may be changed into a positive solution in three ways. First,

by changing the direction of the time ; that is, by changing -f x into

— X, which is equivalent to asking, how long before 12 o'clock the two

couriers were together. Then the equation, ax— bx= m, becomts
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hx— aa: = m, or a:; = , a positive result, because h is greater
b— a

than a. Second, by changing — h into + h, which is equivalent to

turning the forward courier around to meet the rear courier. The

equation then becomes ./ — j. The diagram corresponds to this

;

for, in this case, the point O Avill be between A and B, and wo will

have ax + 6x = AO + BO = AB.

A B

Third, by changing + a into — a, and — h into + h, which is equi-

valent to turning both couriers around, and making the courier B go in

pursuit of the courier A, the equation becomes — ax + hx = m, or

X = , a positive result. It will be seen that the results in the
6— a

first and third cases are the same, as tliey obviously (night to be.

201. Now, let m = 0, and a > h. Then, x =—- = 0. The
a — h

quotient of zero by any finite quantity Ls plainly zero; for tlie numera-

tor of a fraction indicates the amount to be divided, and the division

of nothing must give nothing. Thus, if a man has zero dollars to di-

vide among three persons, the share of each will plainly be nothing.

In the present instance, the soliition, 0, shows that the couriers will be

together at a zero time after 12; in other words, at 12 itself. This

ought to be so; for, when m = 0, they are together at 12 ; and, since

they travel at unequal rates, ^hey will be together no more.

202. Now, let m = 0, and a = h. Then, x = — . To explain this

symbol, it is necessary to notice particularly the conditions. The con-

dition, m = 0, places the two couriers together ; the condition, a — h,

makes them travel at equal rates. Being together at 12, and travelling

at equal rates, they must nlways be together. They will then be to-

gether at 1, at 2, 3, 3i, &c. There is, then, no dctenniiuUe time at

which they are together. Hence, — is called the si/mhol of Itxhtermi-

natlon. It does not indicate that no solution can be found, but, on the

contrary, that too many can be determined ; and the indetermination

consists in this, that any one of the infinite solutions will answer just

10* II
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as well as any other. Suppose, for instance, the answer to the ques-

tion, who discovered America? was, an inhabitant of Europe some

time after the Christian era. The answer would be indeterminate, be-

cause equally applicable to countless millions.

0^

U

This will be a true equation, when x = 1, 10, 1000, anything what-

ever. Hence, we say that x is indeterminate. The diagram, also,

shows the same thing.

A
B

For, when m = 0, the points A and B become the same ; and, since

a = h, then, AO = BO in all positions of the point 0.

Thus, it is shown in three ways that j- is the symbol of indetermi-

nation. The symbol also arises from an identical equation ; for, when
a = h, and vi = 0, we have ax = ax, an identical equation, in which

X may have any value whatever.

By recumng to the equation in y, we will observe that the distance,

from the common point of starting to the unknown point of meeting,

also becomes indeterminate when in = and a = h. This, obviously,

ought to be so.

203. There is one remarkable exception to the foregoing statement,

that — is the symbol of indetermination. It is in the case of vanishing

fractions. A vanishing fraction is one, which becomes — , in conse-

quence of the existence of a common factor to the numerator and deno-

minator, which has become zero by a particular hypothesis made upon it.

204. Take the expression -— = = — , when m = n, but, bv de-
m^—n'^

' '
J

composing the denominator into its factors, we have .

(?n— n) (ni + n)

We see that — is caused by the common factor, m— n, becoming

by the hypothesis m = n. Divide out this factor, and we have left

= r- , when m = n.m -{ n 2n
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, „ . ???^— n^ (m + n) (m — n) ,

Ajrain, take the traction, = ^^ —- = —
-, wnou

'^ m — n m— n U

m = n. But, divide out m — n, and we have
'—-— = 2n, when

„ (m — 7if (m — n) (m— n)
m = n. So, -^ = --^ = -rr, when m = n. But

VI — 71 m — 11

,
m — '^

r. -I c^

by division, the fraction becomes —-— = U, when m = n. ho.

m /M mt «. Q= — , when m = n. But, by divi-
{m — nf (m— «) {m— n)111
sum, we cret = — = x, when m = n.

We conclude, that a vanishing fraction has one of three trae values;

that it may be either finite, zero, or infinity. How, then, are wc to

decide whether the symbol — indicates indetcrmination, or a vanishing

fraction ?

If the particular hypothesis which gives the symbol, does not make

the given equation an identical equation, we may be certain that —

points out a vanishing fraction.

We will resume the subject of vanishing fractions more at lengt^i

hereafter,

205. The foregoing symbols are of the highest importance, and ought

to be remembered.

Arrangement in tabular furm will assist the meiuory.

m

that is, a finite quantity, divided by zero, equal to infinity. The sym-

bol, oo, indicates impossibility in the fulfilment, and absurdity in the

conditions of the problem.

that is, zero, divided by any finite quantity, equal to zero. This is a

true solution, unless it conflict with the condition of the problem.

a; = — A.

The negative solution indicates that the problem, as enunciated, can-
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not be solveil, but the negative result will be a true answer when tlie

unknown quantity is changed in character or direction.

the symbol of indetermination, when there is no common factor in

the numerator and denominator. By indetermination is meant, that

there is an infinite system of values that will satisfy the conditions of

the problem.

GENERAL PROBLEMS.

206. 1. A person employed a workman for m days, upon condition

that the workman should receive n dollars every day that he worked,

and should forfeit p dollars every day that he vras idle ; at the end of

the time he received c dollars. How many days did lie work, and liuw

many was he idle ?

Let X = working days, then m — x = idle diiys; and by the con-

ditions, wc get )tx— (in— .t) jj = c.

Hence, x — -, on — x = idle days = m — —
.

n + J)
n +2) n + p

When will the last expression be zero, and when negative, and v/^hat

do these solutions indicate ?

The negative solution needs some explanation : o, the entire amount

received, cannot exceed nm, what was paid for working ni days, unless

the workman had not only no forfeiture to pay, but also worked more

than the time for which he was employed. The idle days have then

changed their character, and become working days beyond the period

for which the man's services were engaged.

2. The same problem as before, except the workman, at the end of

the time, was in debt c dollars.

,
77?;)— c

,
nm -f-

<•

Alls. X — —i-
, and m — x = .

n + m n -f p
When will the first solution become zero, and when negative ?

3. The same problem, except that the workman received nothing.

mp , nm
Ans. X = —-— , and m — ./• = .

11 + 2^ '^ + 1^

The above results are formulas, and may be made applicable to par-

ticular problems of the same kind.

4. In a certain college, the maximum mark for a recitation is 100.
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A Freshman recited 5 times in mathematics; two days he got 95

for each recitation, and his average for the 5 days was 86. "What did

lie average each of the other three days ? Ans. 80.

5. Divide the number a into two such parts that the product of the

first by m shall be equal to the quotient arising from dividing the

second by n.

a - 071711

Ans. =
, and = .

1 + 117)1 1 + nm

What effect has increasing n upon both results? Under what form

must the second expression be placed to show that it is directly propor-

tional to n and mP When will the two expressions be equal?

6. A father is 32 years old, and his son 8 years. How long will it

be until the age of the father is just double that of the son ? •

Ans. 16 years.

7. A Either is a years, and his son h years old. How long until the

age of the father will be c times as great as that of the son ?

. a — ch
Ans. :r = —.

c— 1

What do those values become when c = 1 ? What, when ch = a?

What, when ch^ a'i What do these different solutions indicate

?

When c — \, x= cc, the symbol of absurdity, as it ought to be.

The hypothesis makes the father ami son equal in age after the lapse

(if h years. When ch = a, x = 0. A true solution, since the father

is now c times as old as his son. When cb'^ a, x is negative. Fu-

ture time being positive, past time is negative. The solution, then,

indicates that r- years ago, the father was c times as old as his

son.

8. A father is 64, and his son 16. How long will it be until the

age of the father is 9 times as great as that of the son.

Ans. X = — 10.

The solution indicates that 10 j-ears ago the age of the father was 9

times as great as that of the sun. The father was then 54, and the

son 6 years old.

9. Bronze cannon (commonly, but improperly, called brass cannon)

are composed of 90 parts of copper, and 10 parts of tin : 8j% lbs. of

copper lose 1 lb. when immersed in water, and 7j% lbs. of tin lose 1 lb.

when immersed in water. The Ordnance Board suspecting that some

bronze cannon did not contain copper enough, immersed one of them,
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weighing 000 lbs., aud found its loss of weight

What was its composition ?

Ajis. so parts of copper, and 10 parts of tin.

Verify the results. The copper lost 89^;J lbs., aud the tin 13y lbs.

The sum of which is 1033|0 9 lbs.

10. A fox, pursued by a greyhound, is 125 of his own leaps ahead

of the greyhound, and makes 6 leaps to the greyhound's 5, but 2 of

the greyhound's leaps are equal to 3 leaps of the fox. How many leaps

will the fox make before he is caught by the greyhound ?

Let X = number of leaps made by the fox; then, since the grey-

hound makes but 5 leaps while the fox makes 6, he will make | cf a

leap to one leap of the fox. Therefore, he will make |.x leaps' while

the fox makes x leaps. But each of the greyhound's leaps are equal

to I of a leap of the fox. Hence, the |x leaps of the greyhound are

equivalent to | . ^x leaps of the fox ', and since the greyhound has not

only to run over the ground passed by the fox in making x leaps, .but ,.

also that passed in making 125 leaps, we have the equation of tlie pro- ,,'

blem. I . |x = :k + 125. Ans. x = 500 leaps, ;:,

Verification. While the fox made 500 leaps, the greyhound made/.

4161 leaps ; and these were equal to | . 4161, or 625 leaps of thq, fox,

the entire number of leaps made by the fox.

Bcmarks.

This problem shows the importance of making the two members ex-

press the same thing by referring them to the same unit. The leaps

of the greyhound have been expressed in terms of those of the fox.

We might have made the unknown quantity represent the number of

leaps made by the greyhound, and, in that case, the leaps of the fox

must have been expressed in terms of those of the greyhound.

11. A fox, pursued by a greyhound, has a start of a leaps, aud

makes h leaps while the greyhound makes c leaps ; but d leaps of the

greyhound are equal to e leaps of the fox. How many leaps will tlie

fox make before he is overtaken by the greyhound ?

,
adb

^''s. X =
^^_^^

.

When will x = oP When will it be equal to infinity? When will it

be negative ? How are these solutions explained ?

X will be zero, when a is zero, x will be infinite when ec = Jh

;
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that is, when the number of leaps made by the greyhound, multiplied

by the value of each leap, is equal to the number of leaps of the fox,

multiplied by the value of each of his leaps. In that case, the hound

•will evidently never overtake the fox ; and the solution indicates impos-

sibility or absurdity, x Tvill be negative when db is greater than ec

;

then the fox is running faster than the hound, and the distance re-

presented by the x leaps must be estimated in a contrary direction.

P' 11 F P

Let II be the position of the hound ; F, that of the fox ; and P the

point where the fox is overtaken by the hound. Then, when x is ne-

gative, we understand either, that the fox pursued the hound and

caught up to him at some point, V on the left^ or that, at some time

previous to the fox being at F, and the hound at H, they were both

together at P', and the fox ruuiiiug faster than his pursuer gained upon

him the distance HF —
- a.

12. A man, desirous of giving 4 cents apiece to some beggars, found

that he had not money enough by 5 cents ; lie therefore gave them 2

cents apiece, and had 15 cents left. IIow many beggars were there,

and how much money had he ? Ans. 10 beggars : 35 cents.

13. A man, desirous of giving n cents apiece to some beggars, found

that he had not money enough by h cents ; he therefore gave them c

cents apiece, and had d cents left. IIow many beggars were there,

and how much money had the man ?

d + h
^

^nd -]- rh
Ans. bcirirars, and cents.

a — c " "" a — f

What values must a, I, c, and d have to make this problem the

same as the last ?

When c ]]> a, the solution is negative; and negative solutions indi-

cate a change of direction and character. The beggars become givers :

the amount given becomes the amount received : the deficiency be-

comes a surplus, and the surplus a deficiency. When c — a, both so-

lutions become infinite, and the symbol, cc, here plainly indicates

absurdity.

When d and L are both zero, the two solutions will be both 0, or

§-• Why?

14. A man, desirous of giving 2 cents apiece to some beggars, found

that he had not money enough by 15 cents ; he therefore gave them
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4 cents jipicce, and liad 5 cents left. How many beggars were there,

and how much money had tlie man ?

Ann. — 10 beggars, and —• S5 cents.

How is the solution explained? There were 10 givers, who each

gave the man 2 cents, and 15 cents over; or each 4 cents apiece, lack-

ing 5 cents in all.

15. A piratical vessel sails at the rate of r miles per hour for a

hours, when she sustains some injury, and can only sail / miles per

hour. At the moment in which the piratical vessel is disabled, a

sloop-of-war starts in pursuit, and sa*ls at the rate of r miles per hour,

from the point where the pirate first started. How long before the

sloop will overtake the pirate ?

Ans. x = > hours.
J.
— /

When will this solution be zero? When negative? When infinite?

Under what form must the fraction be placed to show that x is recipro-

cally proportional to r ?

Make the general solution applicable to a particular example.

16. Divide a number, a, into two parts, which shall be to each other

as m is to n.

ma ^ va
A)is. , and

4- 11 111 + n

17. Divide a number, a, into three parts ; such, that the first shall be

to the second as 7i to m, and the second to the third as q to j5.

aiiq amq amp
Ans. , ) .

mp + mq -f nq mp -f mq + nq mp + mq + nq

What supposition will make all the parts zero ? What one of them ?

What two of them ?

18. Divide a number, a, into four parts; such, that the first shall

be to the second as n to m, the second to the third as q to p, and the

third to the fourth as r to s.

anqr amqr

nqr + mqr + mpr + mp)s nqr -f mqr + mpr -f- mps^

ampr omps

i\qr + mqr + mpr -f mps nqr + mqr + mpr + mp

19. Milk sells in the City of New York at 4 cents per quart. A
milkman mixed some water with 50 gallons of milk, and sold the mix-

ture at 3 cents per quart without sustaining any loss by the sale. How

much water did he put in the milk? An^. GG§ quarts.
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20. Milk sells ia Boston at a cents per quart. A milkman mixed a

certain quantity of water with b quarts of milk, and sold the whole at

(• cents per quart without losing anything hy the sale. How much

water was added to the milk ?

ah — he
Ans. j: = — quarts.

The value of x is zero when c = a. In that case, evidently, no

water is added. The value is infinite when c = o. Then the milkman

gives away, gratuitously, an infinite quantity of water. "When c ^ h,

X is negative. ' Then we understai^l that a certain quantity of water is

separated from, not added to the milk, and that the price of the milk is

c cents per quart, and of the mixture a cents per quart.

21. How often are the hour and minute hands of a clock together?

An>>. J^very Qbj^j minutes.

22. How often are the minute and second hands of a clock to-

gether? Ans. Every 13'g minutes.

23. How often are the hour, minute, and second hands of a clock

together r Ans. Every 720 minutes.

The last problem is solved by means of the least common multiple.

24. There is an island 60 miles in circumference. Three pereons

start from the same point to travel around it, travelling at the respect-

ive rates of 4, 6, and 1(5 miles per hour. How often will all three be

together? Ans. Every 30 hours.

This problem is solved by means of the least common multiple.

25. There is an island a miles in circumference, around which three

persons start to travel, at the rates of h, c, and d miles per hour.

When will they all be together again ?

Alls. In a hours, divided by the greatest common divisor of c — h,

and d — c.

26. Same problem as 24, except that there are 4 persons travelling,

at the respective rates of 3, 6, 12, and 27 miles per hour.

Ans. Every 20 hours.

27. A farmer purchases a tract of land for $500, on a credit of 10

months, or S480 cash. What is the rate of interest that makes these

sums equivalent. Ans. 5 per cent.

Let .T = interest upon $100 fur one month. The statement will be

100 + lO.r : 100 : : 500 : 480.

11
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28. A farmer buys a tract of laud for a dollars, payable iu h moutlis,

or for c dollars casli. What is the rate of iutercst i*

100 (a — c)
Ans. X = ^-^ -.

c/j

What suppositiou will make this value zero? What two supposi-

tious will make it infiuite ? What supposition will uiake it negative ?

and how is the negative solution explained ?

29. Two numbers are to each other as 8 to 3 ; but if 8 be added to

both numbers, the first will only be double the second. What are the

numbers? Ans. 32 and 12.

30. Two numbers are to each other as a to h ; but if c be added to

both of them, the first will only be d times as great as the second.

What are the numbers ?

ac(d—l) fjcQj— 1)
Ans. First, ^ 7-,— : second —^^ r-~.

a — bd a— Ixl

What do these solutions become when cZ = 1 ? What, when

hd = a? What, when bd'^ al What, when d = 1, and hd = a ?

The first hypothesis gives a true solution. The second gives an ab-

surd solution, as it ought, since hd can only equal a when the first

number, after the addition of c to both numbers, exceeds the second

proportionally as much as before. But this is impossible, since the

smaller increases most rapidly. See Article 96.

The hypothesis, hd, ^ (/, gives a solution impossible for arithmetical

quantities, but possible for algebraic. We must either suppose that

two numbers are to be found, which result from the subtraction from a

number not expressed, or we must change the character of the problem,

and make c subtractive. When hd = a, and r? := 1, the two numbers

are represented by g, the symbol of indetermination. An infinite, or

indeterminate, number of quantities will satisfy the conditions of the

problem.

The following problems will illustrate the foregoing cases :

31. Two numbers are to each other as 4 to 3 ; but when 5 is added

to both, the numbers are equal. That is, tZ = 1

.

Ans. Both numbers zero.

32. The same as last, except that, after the addition, the first will be

I greater than the second. That is, hd = a.

I Ans. Both infinite.
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33. The same as 31, except that, after the additions, the first will be

twice as great as the second. That is. Id ^ a.

Ans. — 10, and — 11.

Change the character of the problem, and take 5 from both numbers,

and the solutions will be + 10 and + 7.

34. The same as 31, except that the numbers were equal before the

addition (5f 5 to both.

Ans. Both indeterminate, — . An}- numbers will answer.

35. A fiither divided his estate, worth $1200, among his three sons,

so that the share of the first should be to that of the second as 6

to 4 ; and so that the share of the third should be the greatest common

divisor of the shares of the first and second. What will be the share

of each ? Am. 6600, $400, and $200.

30. A father divides his estate among his three sons, so that the

share of the first shall be to that of the second as — is to '-—
: and so

q s

that the share of the third shall be the greatest common divisor of tht-

other two. The father's estate is worth a dollars : what is the share

of each son ?

, miq , . , a
second, — ; tmrd.

VIS + HJ + 1

'

' ms -\- nq -\- \ ms + nq + 1

When will the shares of the first and second be equal ? What will

the share of the third be then ? What will be the efiect upon the

37. The difference of two numbers is a, and the difference of their

squares is zero. What are the numbers ?

38. The sum of two numbers is 2a, and the difference of their

squares equal to c. What are the numbers ?

4a^ + c ,
4«-— r

Ans. — , and
4« ' 4«

What do these solutions become when c ^ ? What, when

c = 4a'? What, when r ^ 4a-?
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n such a manner that the track of one cuts the

parallel of latitude through the Island of St.

Helena 40 miles on the west of that island,

and cuts the meridian through the island 40

miles north of it; and that the track of the

other cuts the parallel of latitude 80 miles on

the east, and the meridian 80 miles on the

north ? Where will the two tracks intersect

each other ?

Ans. 20 miles east, and GO miles north of the island.

Call DO, X ; then, PJ) = ./ + 40 ; and PD = 80 — a: Hence,

40 + .r = 80 - then, ^ = 20 ; and PD = 60.

40. A Yankee mixes a certain number of wooden nutmegs, which

cost him I cent apiece, with a quantity of real nutmegs, worth 4 cents

apiece, and sells the Avhole assortment for $44; and gains $3-75 by the

fraud. How many wooden nutmecs were there ?

Ans. 100.

41. A Yankee mixed a certain quantity of wooden nutmegs, which
1th

cost him —— part of a cent apiece, with real nutmegs, worth c cents

apiece, and sold the whole for a dollars. He gained d cents by the

fraud. How many wooden nutmegs were there ?

What does this become when f? = ? What, when h = {)'{ What,

when he = 11 What, when he <^1.

42. The sum of three numbers is 200 ; the first is to the second as

5 to 4, and the thii'd is the greatest common divisor of the first two.

What are the numbers ? Ans. 100, 80, and 20.

43. The sum of three numbers is a ; the first is to the second as h

to 0, and the third is the least common multiple of the first two. What

are the numbers ?

ah ac nhc
Am

h -{ c + he 6 -f (• + he 6 + c + he

What single hypothesis will make them all equal ? What will these

values become when a — 115, h = 25, and c = I'o.

41. A northern railroad company is assessed $120,000 damages

for contusions and broken limbs, caused by a collision of cars. They
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pay S5000 for each coutusiou, aud S6000 for each broken limb ; and

the entire amount paid for bruises and fractures is the same. How
many persons received contusions, and how many had their limbs

broken ? Atis. 12 of the former, and 10 of the latter.

45. Same problem as the last, except representing the assessment by

a, the price of each contusion by c, and that of each broken limb

hjh.
a (I

A)is. —, and —

.

'Sc -u

What do these values become when c = y What, when h = ?

What, when a = ? What, when h =^ c?

4G. The reservoir at Lexington contains 48,000 gallons of water,

and supplies the town and Virginia Military Institute. If all the con-

ducting pipes were closed, the reservoir would supply the town and

the Institute for 57| hours, aud the town alone for 96 hours. How
many gallons docs the Institute use per hour.

Ans. 333 J gallons.

47. Two pipes will exhaust a cistern containing a quantity of water,

represented by q, in a hours, and the first will, alone, exhaust it in h

hours. How long will it take the second pipe to empty it, and how

much docs it exhaust per hour.

Ans. hours, and ^ — gallijus per hour.
6— a ab

What do these solutions become when d = f>, and a~^ h?

The negative solution can be illustrated by an example.

48. Two pipes, a and h, will exhaust a cistern in 4 hours; and the

pipe a can, alone, exhaust it in 2 hours. In what time can the pipe h

empty the cistern ? Ans. In — 2 hours.

The solution being negative, may refer to past time, and indicate

that, during the two hours before the pipe a began to play, the pipe //

had exhausted the cistern. The two hours play of the pipe h, added

to the two of the pipe a, give the 4 hours of the problem. Or, we

may suppose that the character of the pipe h has been changed, and

that it has been a supplying pipe for two hours, and, consequently, the

pipe a has been twice the time in exhausting the cistern.

49. A man asks $120 cash for his horse, or §126-30 on a credit of

9 months. Supposing these valuations to be equal, what is the rate of

interest ? Ans. 7 per cent.

11*
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50. A man values liis horse at c dollars cash, or h dollars on a credit

of a months. What is the rate of interest ?

1200 (i— c)
Ans. X = ^: -.

ac

"What does x become when h = c? What, when a'^ h? What,

when or, or c = ?

51. There is an island 32 miles in circumference : two persons start

to travel around it, the first at the rate of 11 miles per day, and the

second at the rate of 3 miles per day. When will the distance be-

tween them be equal, estimated in either direction around the island ?

Ans. At the end of the second day.

52. Two persons start to travel around an island a miles in circum-

ference, the first at the rate of h miles per day, and the second at the

rate of c miles per day. When will the distances between them be

equal, estimated in both directions around the island ?

Ans. X = -—;

2 (6 - c)

What will this solution become if the travellers move at equal rates ?

What, if the second travels the fastest ? What, if the second stops ?

53. Three persons start to travel around an island which is a perfect

circle, 120 miles in circumference. The first travels'at the rate of 4 miles

per day, the second at the rate of 8 miles per day, and the third at the

rate of 6 miles per day. How many days will elapse until the lines

joining their respective positions, and the centre of the island, will

trisect the circumference, under the supposition that the second, only,

has gone past the starting point on a second tour of the island ?

Ajis. 20 days.

54. Three persons travel around a circular island, 160 miles in cir-

cumference. They start together, and travel at the respective rates of

7, 5, and 2 miles per hour. How long will it be until the third will

be between the first and second, and equally distant from them, under

the hypothesis that the first and second, only, have passed the starting

point ? Avs. 40 hours.

55. Three persons travel around an island a miles in circumference.

They travel at the respective rates of h, c, and d miles per hour. How
long will it be until the third will be half way between the first and

second, and how fiir will the first have travelled ?

Ans. Distance, r^-^—— : time, —^r-.— •— 2c/ -f c h— 2rt -j- c
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What do these values become when 2d = h -\- c ? "What, when

2d = c? How do you explain these results

?

5G. Divide the number 24 into two such parts that their product

be the greatest possible.

Let X express the excess of one of the parts over the half of 12,

then, Q -{- X, and 6— x will represent the two parts. And (G + .r

)

(6— a;), 36— x^ is to be the greatest possible. This result will evi-

dently be the greatest possible when a- = 0, or when the parts are

equal.

57. Divide the quantity a into two such parts that their product

shall be the greatest possible. "What are the parts ?

n a
Ans. — , and —

.

58. Two men have each an end of a pole feet long upon their

shoulders, with a burden suspended from it. The share of the load sus-

tained by each man is inversely proportional to the distance of the load

from his shoulder. The proportion of the weight borne by one man is

to that borne by the other as 3 to 2. How far is the burden from the

shoulder of the first man ? Ans. T^ feet.

59. Same problem as the last, except the representation of the length

of the pole by a, and the proportion by h and c. How far is the bur-

den from the shoulder of each man ?

^^ c , (dj
Ans. feet, and feet.

l> + c b -\- c

When will these distances be equal ? "When one double the other ?

00. A general wishing to range his men in a solid square, found

that he had too many men by 100. He increased each side of the

square by one man, and then found that he had but 39 too many

How many men had he ? Ans. 1000.

Let J- = side of the square.

61. A general ranged his army in a solid square, and found that he

had a more men than would enter the square. He then increased

each side of the square by one man, and found that he had h more

men than could enter the square. How many men were in each side

of the square ?

A... X = "-<* +
^l
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What does this value become when 6 + 1 = a ? What, when

h = — 1 ? How do you expkiin these results ? The last result will

confirm a truth hereafter to be demonstrated.

62. Divide the number 20 into three such parts that the half of the

first, the one-third of the second, and the one fifth of the third shall be

equal. What are the parts? Ans. 4, G, and 10.

For, let X represent the equal result after the division of the three

parts by 2, 3, and 5; the. parts themselves will plainly be represented

by '2x, 3.r, and 5x. Hence, 2a; + 3.7; + bx = 20, or j: = 2. Then,

2a; = 4, Sa- = 6, and 5x = 10.

63. Divide the number a into three such parts that the first divided

by h, the second by c, and the third by cl, shall all be equal. What
are the parts ?

. ah ac , ad
^-- M^TTrf- hTTTd' ^'^'^ h+v^r

When will the three parts be equal ? What will be the eifect of

making & = ? How do you explain the result?

64. Two laborers are engaged to dig a ditch ; the first can dig it in

5 days, the second in 3i days. How long will it take the two, working

together, to dig the ditch ? Ans. 2 days.

Verify the result.

65. Two men are employed to dig a ditch ; the first, alone, can dig

it in a days, and the second, alone, can dig it in h days. How long

will it take the two, laboring together, to perform the work ?

,
<xh

Aim. X = .

b + a

When will the time be one half of that required by the first to dig

it ? What change will this solution undergo when the second man fills

up instead of digs out ? What will be the expression for the time in

that case, when he fills up as fast as the first digs out ?

This problem shows clearly that a change in a c(jndition will be

accompanied by a change of sign,

66. A debt of $150 was paid in dollar and five-cent pieces. The

dollar and five-cent pieces were 1100 in number. How many dollar,

and how many five-cent pieces were used ?

Am. 100 dollar pieces, and 1000 five-cent pieces.

67. A debt of a cents was paid in h and c cent pieces, and the total
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number of these pieces was equal to d ? How many pieces of eacli

kind were used.

hd— a - a — cd
Am. — , and — .

h— c b— c

What do these solutions become when hd = a, and cd =. at What,

when a > if/, and cd ^ a? What, when h = c? Explain these

results, especially the last.

C8. The sum of three numbers is 420 : the first, is to the second as

G to 7, and the third is just as much greater than the second as the

second is greater than the first. What are the numbers ?

Ans. 120, 140, and IGO.

69. The sum of three numbers is a : the first is to the second as

b to c, and the second exceeds the first as much as the third exceeds

the second. What are the parts ?

. oc a ^ 2ab— ac
^^"^

HZ • a
^'^^ —36—

We observe that, when quantities bear the above relation, the mean

is always the third of the whole.

What single hypothesis will make all three parts equal ? What is

tlie effect upon the three part>s of making c == 2b? Explain this

result ?

70. At the Woman's Eights Convention, held at Syracuse, New
York, composed of 150 delegates, the old maids, childless-wives, and

bedlamites were to each other as the numbers 5, 7, and ?>. How many

were there of each class ? Ans. 50, 70, and 30.

ELIMINATION BETWEEN SIMULTANEOUS
EQUATIONS OF THE FIRST DEGREE.

207. Simultaneous equations are those which can be satisfied for the

same values of the same unknown quantities. Elimination can only be

performed upon simultaneous equations. It is a process by which we

deduce from two or more equations, containing two or more unknown

quantities a single eqiiatiou, containing one unknown quantity. The

single equation so found is called the final equation, and since it con-

tains but one uiiknown quantity does not lead to arbitrary values.

I
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We will first take the simplest case, that of two equations involving

two unknown quantities. The elimination of one of these unknown

quantities may be effected in four ways.

1. By Comparison.

2. By Addition and Subtraction.

3. By Substitution. ^

4. By the Greatest Common Divisor.

ELIMINATION BY COMPARISON.

208. Take the equations 2y = 2a; + 4,

and 3y = 6x— 12.

From the first we get y = .x + 2,

and from the second, y = 'Zx— 4.

Now, since, by hypothesis, the y and x in one equation are equal to

the y and .r in the other equation, we can equate the values of y, and

make the two x'& represent the same thing. Hence, a; + 2 = 2a;— 4.

From which we get a; = 6. Solving the first equation with respect to

y
X, we get X = y— 2 ; and from the second we get a; = -^ + 2.

Now, since the .r's are equal by hypothesis, we have a right to

y
equate their values. Hence, y— 2 = ^ +2.

Assuming that the y's are equal in the two members of this equa-

tion, wo have y = S. Hence, the values of x and y are x = 6, and

y = 8. It will be seen that these values satisfy both equations.

Elimination by comparison between two equations with two unknown

quantities consists in solving both equations with reference to one un-

known quantity, and equating the values so found. This eliminates

the first unknown quantity, and gives a single equation, from which

the value of the second can be found. The second unknown quantity

being eliminated in like manner, the value of the first can be found.

209. If there had been three unknown quantities, and but two equa-

tions, there would have been, after the elimination of y, a single equa-

tion with two unknown quantities, and the values of these two un-

known quantities would, of course, have been arbitrary. If there had

been two equations and but one unknown quantity, the equation could

not, in general, be satisfied by the same value for that unknown quan-



EQUATIONS OF THE FIRST DEGREE. 131

tity. The equations .r + 2 = a, and x— 2 = a, cannot be satisfied

for the same values of x.

We see, then, fJiat the nnniher of equations must he preciseli/ equal to

the number of unknovni quantities.

210. The equations have been combined under the supposition that

they were simui^neous. If they are not so, the hypothesis has been

absurd, and the result ought to indicate the absurdity. Take thc'

manifestly absurd equations,

y = 2./- + 2,

and y = 2x— 2.

Combining, we get 2x— 2x, or Ox = 4. Hence, x ^ ^ ^ cc.

The absurdity of the h}^othcsis is here -oointed out by the symbol

of absurdity.

211. If the equations arc the same, or differ only in form, they can,

obviously, be satisfied by an indeteriiiinate number of values for one of

the unknown quantities, provided that of thc other is deduced after the

substitution of the assumed value of the first.

Take, y = 2x + 2,

and 1/ = 2x + 2.

Combining, we get 0^ = 0, or ^ = — . Which indicates that y may

have any value whatever. Suppose we assume ^ = 4 ; this value for

1/, substituted in either of the equations, will give x = 1; and the two

values, y = 4, and x = 1, will satisfy both equations. Assuming
arbitrary values for t/, we get an infinite number of values for x, and

the solution becomes wholly indeterminate.

ELIMINATION BY ADDITION AND SUBTRACTION.

212. Resume the equations,

2y = 2x + 4,

and S>/ = Qx— 12,

Multiply the first equation by 3, and thc second in like manner by

2, and we will have

6y = 6x + 12

6y = 12a: — 24

0= Qx — 36.
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If tliGse equations are simultaneous, the 0// in the first equation is

equal to the 6y in the second. And, since the x's will also be equal,

the result of the subtraction of the equations, member bj member, will

be = 6x— 36, or x = 6, the same value as before found.

Now, to eliminate x in order to find the value of?/, the first equation

must be multiplied by 3, and the second must remain as it is.

We will get, Gj/ = 6x + 12,

and 3;y = 6x— 12,

and by subtraction, Zy = 24, or y = 8.

The same value as when we eliminated by comparison.

It will be seen that the coefficients of the unknown quantity to be

eliminated have bees made equal in the two equations ; and, since they

had like signs, the elimination could only be efiectcd by subtraction.

Had these coefficients, however, been affected with contrary signs, it

would have been necessary to add the equations member by member.

Take as an illustration,

2y— x = 3

X— y =: — 1, by addition, x is eliminated.

?/ = 2

To eliminate y, multiply the second equation by 2, and we get

2a;— 2y = — 2,

and by addition, x z=.\

The two values are then y =^ 2, and x — 1, and these satisfy both

equations.

Elimination by Addition and Subtraction consists in making the

coefficients of the unknown quantity to be eliminated the same in both

equations, and then subti-acting the equations member by member, if

these coefficients have like signs, or adding them member by member

if they have unlike signs.

It will be seen that the method of elimination by addition and sub-

traction involves no fractions, whilst the method by comparison, in

general, does involve fractions. To eliminate by comparison between

the equations

3y = a: + 2,

and 2y = a; — 2,

X -{- 2 X 2
will involve the fractions —^— , and —r—

.

o 2
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ELIMINATION BY SUBSTITUTION.

213. This consists in finding the value of one of the unknown quan-

tities in one of tlie equations in terms of the other unknown quantity,

and substituting the value found in the second equation, so as to deter-

mine the valueijf the second unknown quantity in known terms.

llesume the equations,

and 3y = Gj; — 12.

From the first we get .y = x + 2 ; and this value of ?/, substituted

in the second equation (since the ^'s and x's are, by hypothesis, the

same in both equations), gives 3x + 6 = 6.t— 12. Hence, x = Q.

In like manner, x, found from the first equation, x = y—2, substi-

tuted in the second, gives 3?/ = 6 (y— 2) — 12, or y = 8. The

two values are then x = G, and y = S, as found by the other two

methods.

This process will also, in general, involve fractions.

ELIMINATION BY THE GREATEST COMMON DIVISOR.

214. This process consists in transposing all the terms of the two

equations to the first member, and then dividing the polynomials in the

first member by each other, as in the method of finding the greatest

common divisor, until a remainder is found which contains but one un-

known quantity. This remainder, placed equal to zero, constitutes the

final equation, and the value of one of the unknown quantities can be

deduced from it. The value of the other unknown quantity can be

found by a similar process.

Resume the equations,

2y = 2x -f 4,

and Sj^ = Qx— 12,

transposing, 2y— 2x— 4 = 0,

and ?>y — Qx + 12 = 0.

12

6y— 12.r 4- 24
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To eliminate x, arrange witli reference to x, and we have

— Gx + % + 12
I

— 2x + 2.y— 4

— 6x + Cy— 12
I

^ 3 Quotient.

— 3y + 24 = 0, or ^ = S

It only remains to be shown the reason why the remainder is placed

equal to zero rather than to 10, or anything else.

Let A = represent the first equation after it has been prepared for

division. Let B = represent the second equation. Let Q represent

the quotient after the division of A by B, then,

A |_B_

BQ Q
A— QB = 0.

Now, since A is zero, and B zero, A— QB is plainly zero.

For equations of the first degree there will be but one remainder.

But if the equations be of a higher degree th-an the first, there will be

two or more remainders. But the same course of reasoning will show

that each successive remainder must be zero. For the first remainder

having been shown to equal zero, and the divisor B also equal to zero,

the second remainder must also be equal to zero. Let B' represent the

second remainder, and Q' the quotient resulting from the division of B

byB'.

Then, B |jy_

Q^B^ Q^

B— Q' B' == 0.

Since B =: 0, and B' = 0, plainly B — Q'B' must be zero.

The third remainder, the fourth, and so on, can, in like manner, be

shown equal to zero.

215. If we combine equations, which are not simultaneous, by either

of the first three methods, the absurdity of the hypothesis is shown by

cc, the symbol of absurdity in the result. But when we combine such

equations by the fourth method, the absurdity appears in the final

equation having no unknown quantity.

Take the equations

^ = 2x-i-2,

and y = 2x + 4.
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Combining by last process,

y— 2x— 1
1
y— 2x—

4

— 2a;—

4

+ 2 = 0, which, is absurd.

21G. Though it is usual to say that the absurdity of combining equa-

tions which are not simultaneous is shown by the final equation, yet

we might retain the trace of one of the unknown quantities, and then

we would still have the symbol oo. In the last example, we might

retain the trace of y, and the final equation would be 0^ + 2 = ;

whence y = a;.

Rcmarlis.

217. Of the four methods of elimination, the last is generally used

when the degree of the second equation is higher than the first, and the

second method (by addition and subtraction) is preferable for simple

equations, since it does not involve fractions. Elimination by substitu-

tion is generally associated with the other three methods after the value

of one unknown quantity i« found ; this value is generally substituted

in one of the given equations, and we are thus enabled to deduce that

of the other.

Take the equations,

2y = 2.r + 4,

and Zij = G.c— 12.

From the first we have, y = s -f 2, and from the second y = 2x

— 4. Equating the two values of y, we get x + 2 = 2x — 4.

Hence, x = 6. This value for x, substituted in the first equation,

gives 2y = 16, or y =: S. And substituted in the second, gives

3/y = 24, or y = 8. Hence, the given equations are simultaneous.

But if the substitution of the value for x in the two equations gave

different values for y, we would conclude that the equations were not

simultaneous.

218. Examples in elimination heticeen two simple equations o/ the

first degree invohiiij two xtnhioicn quantities.

1. Find the values of x and y in the equations,

y = ax -{ h,

and y = a'x -\- h'.

b— V ^ ah'— a'h
Ans. X = ;, and y = r-.
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The hypothesis, a = a', makes both values infinite. The combined

equations show that when a = a', a'h must equal ah' ; that is, unequal

multiples of the same quantity must be equal, which is absurd. The
equations, in fact, represent two straight lines, and the found values of

X and y represent their point of meeting. The hypothesis, a = a',^

makes the lines parallel, and their point of meeting is, of course, at an

infinite distance.

Making a = a' and h = V, x and y both become g, or indetermi-

nate. In this case, the two equations become identical, and can be

satisfied by any values for x and y, as the symbol g indicates. By this

we mean that arbitrary values may be given to either x or y, and these

arbitrary values for one of the unknown quantities, taken in connection

with the deduced values of the other, will satisfy both equations.

When a = a', and b = I', the two lines coincide, and their point

of meeting, being any where on the common line, is, of course, inde-

terminate.

When h = V, we will have x = 0, and y ^=l>.

2. Combine
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7. Combine
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What do these vahics become when h = 1? What, when c = d?
What, wlien c= d, and & = 1 ? What, when & = ? How are the

results explained ?

15. Combine — -| = <:•.

X y

. a' h'
,

and -—

1

= c
X y
. oV— a'h ah'— ah

ch' — be" ac' — a'c

Solve this example by the four methods of elimination. When x is

eliminated by the last method, the final equation in y ought to be

{ad— a'c) y + a'h— ah' = 0.

What do the values of x and y become when a'h = ah' ? Why?
What do these values become when hd = cU ? What, when a = a',

h = V, and c = d ?

2hc
and y =

16. Combine
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Combining by fourth method, we have

{rj— 2h)x + y I
(2y— 2h— a)x + a.

Preparing for division by multiplying by

(2y-2/.-a)

x(y— 2i)(2y— 26— a) + i/(2y— 26— a)

xly— 2b) (2i/ ~2b— a) + ai/— 2ba y— 2b. Quotient.

2/— 2ay— 26y + 26a= 2y (y— a)— 26 (y— a) = 0. Remainder.

or, {jj
— a) {2y— 26) = 0, the final equation.

Divide out by 2y— 26, and we have y— a = 0, ory=:a; and

this value for y, substituted for cither of the equations, gives if-= .77 •

We might have divided out by y— a, and then we would have had

2y— 26 = 0, ox y = b; and this value for y would liave given x = \.

The equations, then, admit of two systems of values, y = a, and

; and y = b, and x = 1. Example 17 gives, also, a

19.
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22. Combine yx—— = 0.

y
and y -\- X = 1.

Ans. X = 1, and y = 1 ; or x = 3, and y = — 1.

23. Combine a; + ^ + y .— 2,

and x-\-2by = 0.

. -46 . 9
.4«s. .T =^

, and y
6 (a + 2)' •^- 1-6 (a + 2)'

What do those values become when a = — 2 ? What, when

6=0?

24. Combine x -{- h— a + ^= ,

2?/
and 2x -\ ^ = 2a— 26 + 2.

a— 6

Ans. X = a— 6; and y = a— 6.

25. Combine
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known quantities reduced. Two eliminations reduce the number of

unknown quantities and equations by two ; three eliminations by three,

&c. It is evident, then, that when the number of unknown quantities

exceed the number of equations, the last equation obtained will contain

two or more unknown quantities, and will, consequently, be an inde-

terminate equation.

220. If the number of equations exceed the number of unknown

quantities, it is plain that, before all the equations have been freed

from their unknown quantities, we will get a single equation with but

one unknown quantity. The value of this unknown quantity then can

be determined, and it may not be such as to satisfy all the equations.

221. The number of equations and unknown quantities must not

only be equal to each other, but the equations must be different in cha-

racter, not inform merely. The equations j/ = 2x -\-2, and 2i/ = 4x

-\- 4, differ only in form, and it is impossible to eliminate between

them.

EXAMPLES.

1. Solve the three equations,

2^— x-{.z=2,
2i/-\-2x+4z= 8,

Bt/ + 13-c + 3z= 19.

Ans. 1/ = 1, X =^1, and z=^\.

2. Solve the three equations,

y + x + z^^:),

y— :c + z=B,
y — X— 2 =— 5.

Am. y = 2, .r = 3, and 2 = 4.

3. Solve the three equations,

y-f-cc-fs = a+ /> + r,

y— X -\- z -\-h— c = «,

y— 2x — '^z--^a — 2h— 3c.

Ans. y z= a, X =hj and z == c,

4. Solve the three equations,

x + 2y = 4,

x -{- z = a,

y— z=l.
Am y = 4 — (a + Z-), X r= 2 (a + t) — 4, and 2 = 4— (a + 26).



112 ELIMINATION BETWEEN SIMULTANEOUS

5. Solve the tlirec equations,

X— y z=. a— h,

.T + 2 = o,

X + y -\-z— c — L
Ans. y = h— 2, X — a— 2, and z = S -\- c— (a + Z>).

6. Solve the three equations,

y a ^ z c

1 X
2ax + j — 2a + - + y — z = a— c + l.

9/— 2x + 3z=a + Sc — 2.

Ans. y — a, X = 1, and z ~ c.

7. Solve the three equations,

Ax +By + Cz + D = 0,

A'x + B'y + C'z + D' = 0,

A"x + B"y + G"z + D" = 0.

, _ (AT'^— A'V) D + (A^^C— AC^O ly + (AC^— AT) D"
^ns. y —

^^,_j^„ _ ^„^,^ ^ _^ ^^„^_ ^g,,^ ^, _^ ^^^,_ ^,^^ ^,„

_ (B'T^— BV") D + (BC^ — B'V) D' + (S'G — BCQ D'^
''^^ ~ (A'B"— A"B') C + (A"B— AB") C + (AB'— A'B) C"

_ (A^^B^— A^B^O D + (AB^^— A^^B) J)' + (A^B— ABQ D^
^~ (A'B"— A"B') C + (A"B— AB") C + (AB'— A'B) C"'

What do these become when D, D', and D" are all equal to zero ?

Why ? What do they become when either A, A', A", or B, B', B",

or C, G', and C" all three are zero ? Why ? What will be . the effect

of making D, D', and D" zero, and A = A'= A", B = B' = B", and

c .= C = C" ?

8. Solve the equations,

X + y - a,

X + z = b.

y + z = c.

a -\- c— b a + b— c b + c— a
Ans. y = ~

, X = , z = ^ .

What hypothesis will reduce these values to zero ? What will make

the first two equal ? What all three equal ?
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9. Solve the three equations,

.X -f- ^ + 2^— / = 4,

x—y— z = 2,

2x-\-2y \z= a,

Values indeterminate. Why ?

10. Solve the three equations,

X -^^ y — a,

X y

Ix + cy = 0.

Values found from first and second different from those found from

second and third.

11. Solve the equations,

c c

y + X + z~4:(a + b) = —n(a + h),

y— X— 2 (a— h) -f a + :: = 2a + h.

Arts, y = a — h, x = h — (/, and z ^ a -\- b.

12. Solve the equations,

ay + hx = c,

y + x = h,

y + J—z = a.

c— fr ah— r
Ans. y = :, X = , and z = b— a.

a — b a— b

What will be the effect of making h = a?

, f^ ^ , . y + X V + z y + t

13. Combine "^—^ + '^~- + '^^-r— = 3.
4

X + z x+J _^
z_+2 ^ 3

5 G 7

X— y + t— z = 2,

x + y + l + t— z = 5.

Ans. y = 1, X = 2, z = S, and < = 4.

14. Combine xy = 00,

.r+^ = 29.

A71S. X = 0,y = 10, and z — 20.
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15. Combine ^ + ^ + 4 f 4" = 3G.
o 2 4 o

Ans. .-c = 18, y = 20, z == 40, and t= 60.

16. Combine xy= QO,

X + z= 29.

a;— - = 0.

y

Equations absurd. Why?

17. Combine a; = 2z + 4,

y = 3;s— 6,

a; = 2s— 2.

Ans. X = ex, 1/ = ac, and z= ao.

18. Combine
'

x + ^ + z + t = 4,

x + ^— z— t = 0,

I z + t— X— v/ = 0,

7/ + Z— X~f=0,
y— z -{- X— t + w = 1.

Ans. X = 1, y =1, z =1, t = 1, and to = 1.

19. Combine x + y + z — 4,

2x + 2y + 2a = 5

i/— z = 0.

Ans. X = cc, y = cc, and z = oc.

Equations evidently not simultaneous. Tlie combination, tlien, is

absurd, and the result shows the absurdity.

20. Combine x + y + z = S,

x— i/— z= 1.

3a; + 3y + 32 = 18.

Ans. X = oo, 1/ = cc, and z = cc.

The first and third equations plainly conflict Hence, the equations

are not simultaneous.
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The first and second combined give x z=2', and this value substi-

tuted in the second equation, gives y + 2;= 1. The values of x and

y + z, substituted in the third equation, give 9 =rr 18.

But we may have the absurdity shown by its appropriate symbol by

combining the first and third equations, and retaining the trace of one

of the unknown quantities. Thus, we may have Ox = 3, or a; = 00.

And so, likewise, y and z may be shown to be infinite.

21. Combine the equations,

— a; + y + :; + ;— t + a = (a— i) (c + (Z + e),

x—y— z + t = a— h + (h— a) (c + d— c),

x+ ^ -Y-. +-=l(a— h),
c d e

'

X y z t

+ -71 r.
+—

-. a: = 4 + i— a.
a— b c (rt— //) (/ (« — b) e (a— h)

Am. X = (i — b, y =z{a— by, z= (a — b^d, t = (a— h)e.

When will all the values be zero? When three? When the last,

only?

22. Combine the equations,

2^-3. ==1,

2y + Sz= r,

y + z= S,

ylns. ^ ^ 2, and ,~ =: 1.

IIow does it happen that true solutions are found for four equations,

involving but two unknown quantities ?

23. Combine x+y + z + t-{-u=z 200,
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(A) y + .-— « = 10,

(B) ?/ + <— t( — 20.

Ans. Same as for the la.st equation.

In tlie last two examples the new equations, marked (A) and (B),

were not incompatible with the others, and, therefore, the solutions

found, from taking as many equations as unknown quantities, satisfied

the additional equations. When, however, the number of equations

exceed the nuiubcr of unknown quantities, and the surplus equations

are not satisfied by the same values as the other equations, the solu-

tions will be contradictory.

General Re.marls.

2>22,. If we have m equations involving m unknown quantities, we

can find the value of one of these unknown quantities in terms of the

others, and this value substituted in all the other equations will give

us m— 1, new equations, involving m — 1 unknown quantities. We
can now take one of these m— 1 equations, and find the value of a

second unknown quantity in terms of the remaining m— 2 unknown

quantities, and thus get m —.2 new equations, involving m— 2 un-

known quantities. And, by continuing this process, it is plain that,

after m— 1 eliminations, we would get a single equation, invohing a

single unknown quantity, and, therefore, would be able to find the

value of that unknown quantity. But, if we have m equations, involv-

ing m -\-h unknown quantities, we can only make m— 1 svibstitutions,

and then we will have a single equation, involving h -\- 1 unknown

quantities. If Z* = 1, the final equation will contain two unknown

quantities, and bo of the form x + i/ = 10, an indeterminate equation,

in which the value of x can only be found by attributing arbitrary

values to
I/.

HI) z= 2, the final equation v,'ill contain three unknown

quantities, and be of the form of cc -f y + s = 10 ; in which x can

only be determined by giving arbitrary values both to y and z. It is

plain, then, that when the number of unknown quantities exceed the

number of equations, the elimination will lead to indetermination.

223. If, on the contrary, we have m -\- h equations, involving m
unknown quantities, m of these equations are suificient to determine

the m unknown quantities. The remaining h equations might, or

might not, be satisfied by the values found from the m equations. If

the I equations are satisfied, they are not independent equations ; if they

are not satisfied, they are contradictory equations. Thus, x = 2, and
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2xz=4: are satisfied by the same value of x ; but the second equation

is not an independent equation, since it differs only in form from the

first, a; = 2, and a; = 3 are contradictory equations. We conclude,

then, in general, that the number of independent equations must be

precisely equal to the number of unknown quantities.

224. An artifice sometimes enables us to eliminate between a num-

ber of equations more readily than by the usual direct process. As an

illustration take the equations,

X + y= 5,

X -{- z= Q,

z +y= 7.

Let s= x -{ 7/ -{- ::. The three equations then become

s— z= b

s— X = 7

Adding, we get 3s— (x -|- y + ~) = 18. But, since x + 1/ -\- z

= s, we have 2s := 18, or s = d. This, substituted in equations

marked A, gives 2i= 4, y = 3, and x= 2.

Take, as a second illustration,

xi/ -\- xz= 27,

7/z-{-y + z= 29,

xyz = GO.

27
By factoring and solving the first equation, we get y + 2 = —

.

27
This, substituted in the second, gives ys + — =: 29. But from the

third equation we find yz =— . Hence, f-
— = 29, from which

27
x = ^. Then, y + ^ = — = 9, and xyz= GO, or yz= 20. Elimi-

nating, we get z-— dz + 20 == 0, or s«— 10^ + 25 + s— 5 = 0, or

(z— by + z— b = 0, or (s— 5) (2— 5 + 1) = 0. Dividing out

the second factor, we have left z— 5 = 0, or z=zb, from which

y= 4.

Take another illustration,

xy + xz= \2 (1),

y^-f^=rl08 (2),

s — X = 8 (3).
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Subtracting (1) from (2), we get y {z— j-) -\- z {z— x) == 96, or

(z— X) {y + 2:)=r96 (4). Dividing (4) by (3), member by mem-
ber, we got y -\- z = 12 (5). Equation (2) may be put under tlie

form of z (?/ + z) = 108. Dividing this, member by member, by (5),

we will have 2 = 9. Equation (1), put under tlie form of x (y -^ z)

=z 12, divided by (5), gives x = 1. The value of z substituted in

(5), gives 2/ = 3- Hence, x = 1, ?/ = 3, and z = 9.

PROBLEMS PRODUCING SIMULTANEOUS EQUATIONS OF THE
FIRST DEGREE.

225. Many of the problems already given (Arts. 176 and 206) could

have been solved as readily, or more readily, with two unknown quan-

tities ; and there are many problems wliich can only be solved by the

use of two or more unknown quantities.

We will solve three of the problems already given, to show the man-

ner of using two unknown quantities.

1. The sum of two numbers is a, and their difference I, what are

the numbers ?

Let X = greater number, and y = smaller. Then, by the condi-

tion of the problem, x + y = a, and x— y =zlj. Eliminating y by

adding the two equations member by member, we^ get a; = — -|- —

.

Eliminating x by subtracting the equations member by member, we

have ?/ = — -. So, we see that when we know the sum and diffe-
2 2

rence of two quantities, we get the greater by adding the half difference

to the half sum, and the less by subtracting the half difference from

the half sum.

Thus, the sum of two numbers is 20, and their difference 10 ; the

greater is, by the formula, 15, and the smaller 5.

2. A fox is 125 of his own leaps ahead of a greyhound, and makes

6 leaps to the greyhound's 5 ; but two leaps of the greyhound are

equivalent to 3 leaps of the fox. How many leaps will the fox take

before he is overtaken by the greyhound ?

Let X = distance passed over by the fox, counted in terms of his

own leaps. Let y = distance passed by the greyhound. Then these

distances would be proportional to the relative number of leaps taken

by the fox and gi'cyhound, if their leaps were equal in length. And
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we would have x, y : : 6 : 5. But since each leap of the greyhound is

equivalent to | leaps of the fox, the 5 leaps of the greyhound are equi-

valent to 5 . I = ij^ leaps of the fox. Hence, x : y : : Q : L^, and

the distance, y, passed by the greyhound, will be expressed in terms

5x
of the leaps of the fox. From the proportion we get y = —, and from

the condition of the problem, y— x = 125. Combining, we get

X = 500, and y = 625 leaps of the fox.

It will be readily seen that this solution has some advantages over

that with one unknown quantity.

3. Two couriers start from different points on the same road, and

travel in the same direction. The forward courier travels at the rate

of b miles per hour, and the rear courier at the rate of a miles per

hour. They were separated by a distance of m miles at starting.

How long will it be until they come together ?

Let X = distance travelled by forward courier, y = distance tra-

velled by the rear courier. Then, since the distances travelled must be

proportional to the rates of travel, we will have x : y : : h : a, or by

= ax. From the conditions of the problem, we have y— xz=m;

combining, we get x = r, and y = -,. These di.stances, di-
u — (/ u — o

vided by the rate of travel, will, of course, give the time elapsed before

their junction. Both expressions give for the time, as found,
a— b

when one unknown quantity was used. This solution, compared with

the preceding, shows how much the use of two unknown quantities

has shortened the work.

4. A carpenter wishes to saw a piece of timber, 20 feet long, into

two parts, so that one of them shall be but two-thirds as loii"- as the

other. "Where must he place his saw ?

Ans. At 12 feet, or 8 feet from the end.

5. A carpenter wishes to saw a piece of timber 7n feet long, into two

such parts, that one shall be the — part of the other. Where must he

place the saw ?

. . ^ b)}i am
Alls. At -—— feet, or feet from the end.

b + a b + a

What values must b and a have to make the solutions in examples

4 and 5 the same ? When will the parts be equal ?

13*
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6. A colonel wishes to divide his regiment of 800 men, and 10 com-

panies, in such a manner that the two flank companies shall contain

each one-third more men than each of the central companies. What

must be the number of men in each flank company, and in each cen-

tral company ?

^??s. 100 men in each flank company, and 75 in each central com-

pany.

7. A colonel wishes to divide his regiment, composed of a men, and

b companies, in such a manner that the two flank companies shall each

contain — more men than each central company. What must be the

composition of the flank and central companies ?

Ans. Central companies, each -^ ; flank companies, each-v- 7^
be + Z be + 2

What values must a, b, and c have to make this solution the same

as the last ? What do the expressions become when c = ? What
do the central companies become in that case ?

8. A man becoming insolvent, leaves $4000 to his two creditors : to

one of whom he owes $8000, and to the other $6000. What share

ought each to have out of the $4000 ?

Ans. The first $2285|, the second |;i714f

.

9. A man becoming insolvent, leaves a dollars to his two creditors.

To one he owes b dollars, and to the other c dollars. What share

ought each to have ? . ab
^ ac

A71S. X = , and V == .

When will these values becomes equal ? When the first double of

the second ? What do they become when he leaves nothing ? What,

when he leaves enough to pay his creditors ?

10. A planter hired a negro-man at the rate of $100 per annum, and

his clothing. At the end of 8 months the master of the slave took

him home, and received $75 in cash, and no clothing. What was the

clothing valued at ? Ans. $12 J.

Verify this result.

11. A planter hired a negro-man at the rate of a dollars for c

months, and was also to give the negro a year's supply of clothing.

At the end of b months the negro was taken away, and the planter

paid m dollars in cash, and gave no clothing. What was the clothing

valued at ? . cm— ab
Ans. y = r .
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When will 2/ = ? When -will it be negative ? Wlieu iufiuite ?

The zero solution can be explained most satisfactorily by placing

cm = ab under the form — =— . Let the pupil make a problem to

explain the negative solution.

12. A planter has 500 acres of cultivated land, which he wishes to

plant in such a manner that he may have twice as much cotton as corn,

and three times as much corn as small grain. What division of his

land must he make ?

Ans. 50 acres of small grain; 150 acres of corn; and 300 acres of

cotton.

13. A planter has m acres of land and wishes to cultivate it all so

that he may have a times as much cotton as corn, and b times as much

corn as small grain. How much of each kind must he have ?

Ans. z = q
, J

acres of small grain, y= z^ ,—;

—

j acres 01
1 -i- b + ab "= ' -^ 1 + b + ab

corn, and x= ,
5 r acres of cotton.

'

1 +b + ab

What suppositions upon a, b, and vi will make this solution the

same as the last ? What two suppositions will make the three divisions

of land equal ? What will be the effect of increasing b upon the values

of z, y, and x? What of increasing or decreasing m? Why does m
enter into the three numerators ?

14. In the year 1G92, the people of Massachusetts executed, impri-

soned, or privately persecuted 409 persons, of both sexes, and all ages,

for the alleged crime of witchcraft. Of these, twice as many were pri-

vately persecuted as were imprisoned, and 7j| times as many more

were imprisoned than were executed. Ile(][uircd the number of suffer-

ers of each kind ?

Ans. 19 executed, 150 imprisoned, and 300 privately persecuted.

15. A planter has $2500 to expend in the purchase of 30 head of

horses and mules. He wishes his horses all to be equal in value, and

his mviles all to be equal in value, but each mule to be one-fourth less

valuable than each horse, and the number of mules to be twice as

great as the number of horses. What must be the price of each horse,

and of each mule ? Ans. Each horse $100, each mule $75.

16. A planter has a dollars to expend in the purchase of b head of

horses and umles. He wishes to have c times as manv mules as horses,
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but cacli nnilc to be — times less valuable than each horse. What
a

must be the priee of each mule, and of eacli horse ?

Ans. Each horse , ^ ,
—,

—

—- : each mule ~—, ^ -^.
b {d -f- cd— c)

'

b (jci + cd— c)

What values must be given to a, b, c, and d to make this solution

the same as the last ? IIow can the solution be verified ? What will

be the effect of making (Z= 1 ? Why ? What is the effect of making

c = 1. The expressions for the entire cost of the horses and mules

and -3—^

—

-—--
. What is the effect of making f=

d + cd— c d + cd

upon these values ? What of making a = ? How must the expres-

sions for the price of eachi liorse and mule be written to show that the

former decreases with the increase of d, and that the latter increases

with the increase of d ?

17. The sum of two digits is 6, and the second digit is double the

first. What is the number made up of these two digits ?

Ans. 24.

The digits are the individual figures making up a number. In this

example 2 is the first digit, and 4 the second.

18. The sum of two digits is a, and the second digit is b times

greater than the first. What are the digits, and what is the number ?

,
a ah

^
10a -{- ab

Ans. X =—
-^, 2/ = ^^1 ; number = -y^^^-

The number 24 is made up of the digits 2 and 4, the number 42 of

those digits in reverse order. To express that, 18 added to the first

number would reverse the digits; we represent by x and y the digits

in the first number. Then, lOx + y + 18 =zlGy -\- x.

19. A number is made up of two digits, and the first is double the

second. If 27 be taken from the number, the digits will be reversed.

What is the number? Ans. 63.

lOx + y— 27 = IQy + X, and x = 2y.

20. A number is made up of two digits, and the first is a times as

great as the second. And if b be taken from the number, the digits

will be reversed. What is the number, and what are the digits ?

Ans. First digit ^'^^ ; second g^^^- Number, f^^,
(10a + I) b
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What will these results become when a = 1 ? Does the equation

of the problem indicate the absurdity '( What will the number become

when i = a— 1 ? What, when a <^\'i How is the negative solu-

tion explained ?

21. A number is made up of three digits, whose sum is equal to 10.

The first digit is double the second, and the second triple the third.

What is the number ? Ans. G31.

22. A number is made up of three digits, whose sum is equal to a.

The first is h times as great as the second, and the second c times aa

great as the third. AVhat are the digits, and what is the number?

,
a ac acb

_ 100oc6 + lOac + a

he -\-c-\-\

What will be the effect of increasing c upou the three digits ? What

of increasing h ? What upon the digits and number of making

6 = 0?

23. A number is made up of three digits, whose sum is equal to 10.

The first digit is double the second; and if 495 be taken from the

number, the digits will be reversed. What is the number ?

Ans. 631,

24. The sum of the three digits which make up a number is equal

to m. The first digit is a times as great as the second, and if h be

taken from the number the digits will be reversed. What are the

digits, aqd what is the number ?

mam— 6 (a -f 1) 99ni + h (99m -\- h) a

(2a + 1) 99 ' y~ (2a + 1) 99' (2a + 1) 99'

100a (90??i -f h) + 10 (99m + J) + 99am— b(a + 1)
and number=—^

^2, + 1) 99

25. A gentleman in Piichmond expressed a willingness to liberate

his slave, valued at SlOOO, upon the receipt of that sum from charitable

persons. He received contributions from 24 persons; and of these

What was the entire amount given by the latter ?

A71S. $50 by the former; 6950 by the latter.

26. If 7i be taken from the numerator and denominator of a certain
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fraction, its value will be doubled; but, if 6f be taken from the nume-

rator and denominator, its value will be trebled. What is the fraction?

Ans. |.

Wbat fraction is that from wbich, if a be taken from both its terms,

the value will be doubled ; and if b be taken from both its terms, the

value will be trebled ?

2a— h ah
Ans.

4a— 06' 4a— ob

ah

2a— b

The first result gives the reduced fraction, the second (which is

identical with it) the fraction in which the substitution must be made.

We will illustrate by a problem.

27. Find a fraction, such, that if 5 be taken from both its terms,

the value of the fraction will be doubled ; but, if 4 be taken from both

its terms, the value will be trebled.

Ans. f,or^

9"

The subtraction of 5 from the numerator and denominator of the

second fraction will give |, and the subtraction of 4, in like manner,

will give |. But these results could not be obtained by operating on

the first fraction. The reason of the difference is obvious.

28. If A and C can do a piece of work in 3 days, B and C together

in 7 days, and A and B together in 3|, in what time can each per-

son do the work alone ?

Ans. A in 4i days; B in 21 days, and C in lOJ.

29. A and C can do a piece of work in a days, B and C can do the

same in b days, and A and B the same in c days. In how many days

can each one, alone, do the work ?

Ans. A in -

—

days, B in • --^— days, C in
be + a {b— c) -^ '

ac -\- b (^a — c) "^
'

2^7?;^

be— a (6— (•)

What do these values become when a =zc? What, when b — r?

What, when a= b = c? Suppose a {b— f) ]> be, will c be a co-

operator, or a draw-back ?
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30. If A can do a piece of work in 4i days, B in 21 days, and C in

10^ days, how long will it take them all, working together, to do it ?

A71S. X = 21 days.

Solved by a single equation,

31. If A can do a piece of work in a days, B in Z» days, C in c days,

how long will it take them all, working together, to perform it ?

. ale
Ans. X = — days.

ab + ac + be
"^

If &= 0, then, X ^0, an absurd result. But, by going back to

the equation of the problem, one of the terms is infinite, aud the ab-

surdity appears under its appropriate symbol.

32. A farmer has a piece of land, worth $800, and two negroes.

The first negro and land together are worth three times as much as

the second negro, and the second negro and land together arc worth

just as much as the first negro. What is the worth of the negroes ?

Alls. First, 81G00 ; second, $800.

33. A former has a tract of land, worth a dollars, and two slaves.

The first slave and the land together are worth b times as much as tho

second slave, and the second slave and land together are just equal in

value to the first slave. What is the value of the slaves ?

Ans. First, —^^ — dollars; second,
"

dollars.
o— 1 b— 1

What do these values become when b = 1?

34. A has a number of five and three-cent pieces in his pocket ; B
wishes to get 24 of them, and gives A one dollar. How many pieces

of each kind must he get ?

Alls. 14 five-cent pieces, aud 10 three-cent pieces.

35. A has two kinds of pieces of money in his pocket ; the first

worth a cents each ; and the second b cents each. B wishes to get m
of them, and gives A c cents. How many pieces of each kind must

he get ?

. am— e , , . , ,
<" — bm ^ , . ,

Ans. X = 5- second kind, and y= first kind.
a— b -^ a — b

Suppose a = b, aud explain the absurdity of the solution. What is

the meaning of the solution when am= c? What, when am^<^ c?

What, when bm ^ c ?

36. A has two kinds of money. It takes 8 pieces of the first kind,
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and 83i pieces of the second kind to be worth a dollar. 3? offers him

a dollar for 27 pieces. How many pieces of each kind must he get?

Ans. 2 of the first, and 25 of the second kind.

37. A has two kinds of money. It takes a pieces of the first kind,

and b pieces of the second kind to make a dollar. A dollar is offered

for c pieces. How many of each kind must be given ?

Ans. —r of the first kind, and —y of the second kind.
b— a b— a

Explain the solution when b = a. When b = c. When a = 0,

or c.

38. A certain person has a certain sum of money, which he jjlaced

out at a certain interest. A second person has a less sum by $16661,

which he puts out at one per cent, more interest than the first got, and

receives the same income as the first. A third person has a less capi-

tal than the first by $2857^, but invests it two per cent, more advan-

tageously, and also receives the same income. What are the three

sums at interest, and what the respective rates of interest of each ?

Capitals, $10,000, $8333^, and $7142f

.

Rates of interest, 5 per cent., 6 per cent., and 7 per cent.

39. A gentleman invests a certain capital at a certain rate of inte-

rest. A second gentleman has a less capital by a dollars, but, by in-

vesting it at one per cent, more advantageously he derives as much

income as the first. A third gentleman has a less capital than the first

by b dollars, but, by investing it at two per cent, more advantageously,

he also receives the same income as the first. Required the three capi-

tals, and the three rates of interest.

Ans. Capitals, $- Tj^—^i r~)^-r, r"-^ ^ 2a— b Za— b la— b

2 (b— a) h ^ 2a
Rates of mtercst, —r^ ^, ^ r, and =-.

' 2a— b 2a — b La— b

Verify these results. Discuss them when b = a. When b = 2a,

When b = 0. When a = 0, &c.

One hundred parts of gunpowder are composed of the following ma-

terials in the following proportions :

For -war. For hunting. For mining.

Nitre 75 78 65

Charcoal 12 1 12 15

Sulphur 12,^ 10 20

100 100 100
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40. At the beginning of the Mexican war, the proprietor of the Du-

pont JNIills wished to work up the materials of his powder for hunting

and mining, and make war powder out of it. He removed the sulphur

by sublimation, and then wished to ascertain what proportion to take

of the remaining charcoal and nitre in the two specimens. What pro-

portion ought he to have taken ?

Ans. The proportion of the hunting materials to that of the mining,

as i|g is to 2^5 ; or as 125 is to 30 ; or as 25 to 6.

Then, calling 25x the amount of hunting material in the nitre, we

"5 X 75
have 25x + ^-^^ = "5, or x = |-|. There ought then to be

'—
G X 75

parts of the hunting material, and —-j— parts of the mining material

to give 75 parts of nitre in the war mixture. A similar relation can be

obtained for the proportion of charcoal.

41. The sura of four numbers is 107. The first, increased by 8, the

second, increased by 4, the third, divided by 2, and the fourth, multi-

plied by 4, will all give equal results. "What are the numbers?

Ah!^. 20, 24, 50, and 7.

42. Tlie sum of 4 numbers is a. The first, increa.sed by b, the

second, increased by c, the third, divided by (f, and the fourth, mul-

tiplied by/, will all give equal results. AVhat are the numbers?

(a_ c)/— (1 -f //) h (c + a)/+ (.//--f l)c— (l+/0?>
^"'- '\2+d)/+l '

(2-1- J)/+l
\2/i + (a-c^/ \d 2h+a-c

(2 + c/)/+l ' ^(2-|-cO/+r
Verify these results by addition. Show that their sum is equal to a.

Verify them by adding h to the first, c to the second, multiplying the

fourth by/, and dividing the third by J. What single supposition will

make tlie first and second equal to each other ? What single supposi-

tion will make the third and fourth equal ? What will make the first

part zero ? What effect will this hypothesis have upon the other parts ?

43. Four persons owe a certain sum of money: of which the first is

to pay one-third, the second one-fourth, the third one-fifth, and the

fourth one-sixth. After paying a portion of the money, there is still

a deficiency of $36. What portion of it has each to pay ?

Ans. The first, Sl2|of ; the second, $dj%\; the third, 67yVT; ^^^

fourth, SG/,\.

Let 60.r = the proportion of the first.

14
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•i4. Four persons owe a debt of a dollars : of wliicli the first is to

pay the — tli part; the second, tlic —th part; the third, the —th part;

and the fourth, the — th part. What has each to pay?

Ans. The first, -^-^

—

, ,^ —,—; r- : the second,
' cd {c -\-h) + be (e + d)' '

aide ^, ^, . , ahce
the third, —^— — — — ; the

ed (c + 6) + he (e + (/)

'

' ed (c + 6) + be {e + d)'

fourth,
(c + 6) + be (e + d)

What hypothesis will make the first two results equal ? What the

second two ? What all four ? What will be the effect of making

either h, c, d, or e equal to zero. How is this explained ?

45. The denominator of one fraction is 4, and of a second fraction,

8 ; and the numerator of the second fraction is 4 times as great as the

numer^^or of the first. The two fractions and their greatest common

divisor, added together, are equal to 3. What are the numbers ?

Ans. i,
igi, and |.

46. The denominator of one fraction is h, and that of a second frac-

tion is c; the numerator of the second fraction is m times greater than

that of the first, and the sum of the two fractions is equal to the least

common multiple of their denominators. What are the fractions ?

Ans. -, and
c + mb c + mb

b ~c

47. A 1000 cubic inches of bronze were found to weigh 5100 ounces.

A cubic inch of copper weighs b\ ounces, and a cubic inch of tin

weighs 4i ounces. What was the proportion of copper and tin in the

composition of bronze ?

Ans. The copper to the tin as 85 to 15.

48. Some inspectors of cannon weighed in cubic inches of bronze,

and found the weight to be to ounces. A cubic inch of copper weighs

h ounces, and a cubic inch of tin weighs c ounces. How much copper,

and how much tin was in the composition ?

to— mc „ ^mb — w .

Ans. — ounces of copper, and — ounces oi tin.

b— c b — c

What will these values become when b z= c ? Going back to the
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equation of the problem, -what will b =^c show in regard to tv and mb ?

Suppose c= 0, what will the results show ? Suppose ^o =i 0, what

will both solutions become ?

VANISHING FRACTIONS.

The symbol g has been interpreted to sitrnify iudctermiiiation, and

this is the true interpretation for solutions of equations of the first

degree, when the symbol proceeds from two suppositions, made either

upon the values found, or upon the equation of the problem. But the

symbol may arise from a single hypothesis, and then it always indicates,

not indctermination, but the existence of a common factor.

x-a y^
Take the expression, —, which becomes g whcn=j:

—

y. But,
X y

by factoring the numerator, we have — = ^-'-A-

—

-^'2 __
^ ^ x— y x— y
X + y ^= 2y, when x =zy. The true value of g in the present in-

stance is 2y, as shown by removing the common factor, x— ?/. Again,

. X — y , T-, '— V
take the expression -, = — when x = y. But —, ~ =^

.(,'— if
"^

x^— y^

-— ^7—; = = -r when x := ?/. And the true value of
(x— y){x-i-y) x-^y -ly

the vanishing fraction is again shown to be finite. But, take -^- —.
(•*:— y)

=
J-

when x = y. Factoring, we get -, —^
. = = —

,

or Qo when x= y. And the true value of the vanishing fraction in the

(x yf
present instance is infinity. Take again, ^— = — when x = y.

Factoring, we get ————^^^ — z=i x— y = when x = y. So,

we see, that when there is a common factor existing between the nu-

merator and denominator of a fraction, which factor has become zero^

the fraction may have either of three values, finity, infinity, or zero.

To show it more generally, take the expression -~ = — when
Q {x — (/)"

x = a. There may be three cases, m may be = n, <^ n, or ^ n.
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p (x a")™
In the first case, when m==in, the fraction becomes j—^^ r—

=

Q (x— a)™

P— , a finite quantity. In the second case, divided by (.c— o)"", the

P
fraction becomes /r- ^ , which is infinite, when x =z a. In the

third case, when m ^ n, dividing by (x— o)", the fraction becomes

Y (x a)"""—^^ — = when X= a. And as we have taken a general ex-
Q

pression, we conclude, in general, that a vanishing fraction is one

which assumes the form of g, in consequence of the existence of a

common factor, which has become zero by a particular hypothesis,

and that the true value of the fraction may be either finite, infinite, or

zero.

227. When the common factor is apparent, we have only to strike it

out before making our hypothesis, and we get at once the true value

of the fraction. But there are many expressions, in which it is diffi-

cult to detect the common factor, and it then becomes necessary to

know a process by which the common factor may be discovered. We
will illustrate the process by a simple example, in which the common

X^ ft2

factor is apparent. Take the expression, =: — when x = a.
X — a

Here, the assumed value of x is a. If, however, we make x = a -{ h,

and substitute this value for x in both terms of the fraction, reduce the

result to its lowest form, and then make h = 0, it is evident that we

will have done nothing more than attribute to x the value a. Making

,1 , ,., ,. ,
«' + 2ah + li'— a" 2ali + A' „

the substitution, we get ; = r i=z2a -{-Ji^

2

- is then 2a,

when X =za.

As the same process is plainly applicable to all fractions in which

the terms are affected with iiumerical exponents, we derive for such

fractions the general

RULE.

Adrihufe to (hat term vpon which the hypothesis is made the value

V)hich reduces the fraction to the form of ^ plus an increment h, reduce

the result to its lowest form and then make h = 0.
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In the above example, x is tlie term upon which the hypothesis is

made, and a the value which reduces the fraction to the form of g
Hence, by the rule, x =:a + h.

228.— EXAMPLES.

1. Find the value of = — when x = a.
X— a

Ans. 3al

2. Iind the value of —. = — when x = 1.
x'— X— ax -\- a

Ans. -.

a— 1

o I?- wi, 1
pX^ -\-hx + X + h

6. lind the value oi —. = — when x =— 1.
x'— ax -\- X— a

Ans.
1 +a

4. Find the value of
'^

^
'.

'"" '

'

'^^^ = ^ when x z= m.

Ans.

X- + nx'— mx— nm-
f)

x^ -\- ax— mx— am
m (1 + 2«)

a -\- 111

;; r- ^ .1 i
. x^— \x^— xif \- h/^ .

5. Find the value of
^ ^ ^ = — when x = y.

6. Find the value of ^ -. —^ := — when x=.\.
x^— x^— X + 1

Ans. CO.

7. Find the value of the fraction —^
'- — =: — when

x'— ox— ax -\- ab

X= h. Ans. X = b -{ a.

8. Find the value of the fraction
'— '—— = — when
X — bx— ax -{- ab

x=za. Ans. 2a.

14* L



162 YANISIIlNCi FRACTIONS.

The two last results arise from the fact of the given fraction being

a double vanishing fraction. It can be put under the form of

^
,

^
^'

,
, which is a vanishing fraction, when either o: = h,

(x— b) (x— a)

or a;= n.

229. It is obvious, in all these examples, that x, minus the value of

X, which makes the fraction assume the form of ^, is the common fac-

tor. If we, then, divide both terms of the fraction by this common

factor, and then attribute the appropriate value to x, we will have the

true value of the vanishing fraction. But there are many expressions

for which this rule fails, as will be seen more fully hereafter.

Since it is often difficult, if not impossible, without the aid of the

differential calculus, to ascertain the existence of a common factor, if

there be one, it becomes important to have a simple test by which we

can tell whether £ indicates indctcrmination or a vanishing fraction.

Take the fraction tt—^^ ^, which becomes [{ by the single hypo-
Q(.c— a)"'

thesis x= a. It is evident that the expression is a vanishing fraction,

and that the common factor is some power of x— a. But take the

'P (x a)"'
fraction —j r^-, which becomes Q by the double hypothesis x= a,

vj (X Uj

and x = h. It is plain that the expression cannot be a single vanish-

ing fraction like those exhibited in the first six examples ; and if it is

a double vanishing fraction of the form exhibited in Examples 7 and 8,

it cannot be a true solution to a problem of the first degree, since x

cannot have two values. We then conclude, that when g arises from a

single hypothesis upon a solution of an equation of the first degree, it

indicates the existence of a common factor. But, if it arises from

two suppositions, it indicates indetermination. In conformity to this

rule, we have interpreted §, in the problem of the couriers, to indicate

indetermination, because the symbol proceeded from the double hypo-

thesis, VI =: 0, and a :=b.
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FORMATION OF THE POWERS AND
EXTRACTION OF ROOTS.

230. The power of a quantity is the result obtained by multiplying

it by itself any number of times.

Any quantity is the first power of itself.

If a quantity be multiplied by itself once, or enters twice as a factor

iu the result, the result is called the second power of the quantity.

Thus, 2.2= 2!^, or 4, and a . a =a^, are the second powers of 2

and a.

If a quantity be multii^lied by itself twice, three times, four times,

&c., or enters into the result as a factor three times, four times, &c.,

the result is called the third power, the fourth power, &c., of the quan-

tity. In general, the number of multiplications of the quantity by

itself is one less than tht^quantity which designates the power, and the

number of times that the quantity enters as a factor in the result, is

precisely equal to that quantity.

The quantity which designates the power is called the exponent of

the power, and is written a little above and to the right of the given

quantity.

Thus, 2*= 4 is the second power or square of 2.

2' = 8 is the third power or cube of 2.

2* = 16 is the fourth power of 2.

ay is the ?/ power of a,

and indicates that a has been multiplied by itself y— 1 times, or that

a enters as a factor y times in the expression o>.

When no exponent is written, the first power is always understood.

Thus, 2 = 2', and a + i = (a + i)'.

The quantity to be raised to a power may be expressed numerically,

or by letters, and may be entire or fractional, positive or negative.

And, since the power in every case is a product, we may define the

formation of a power, to consist in finding the product arising from

multiplying the quantity, by itself, a number of times one less then

that indicated by the exponent of the power.

The poxcer differs from an ordinart/ prodxtcf, then, in this essential

particular, all the factors of the power are equal.
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231. The root of a quantity is tliat quantity which, multiplied by

itself a certain number of times, will produce the given quantity.

When a quantity, multiplied by itself once, or taken as a factor

twice, gives the given quantity; it is called the square root of the

given quantity. Thus, 2 is the square root of 4, because 2.2 = 4;

and a is the square root of a^, because a . a ^= a^.

Raising quantities to powers is called Involution.

Extracting the roots of quantities is called Evolution.

Involution deals in equal factors. Evolution finds one of those equal

factors. t

232. Involution is a simple process. Evolution is more difiicult,

and requires particular explanation. "We will begin with the simplest

form of evolution, the extraction of the square root of whole numbers,

which is nothing more than evolving one of the equal factors out of the

product of two equal factors.

It is evident that evolution is the reverse of involution, and that we

cannot extract any root without knowing how the powers of that root

are formed. To demonstrate the rule, then, for the extraction of the

square root of whole numbers, we must first examine and see how the

square power of whole numbers is formed.

233. The first ten numbers are

1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

And their squares are

1, 4, 9, 16, 25, 36, 49, 64, 81, 100.

Reciprocally, the numbers of the first line are the square roots of the

corresponding numbers in the second line. We see, also, that the

square of any number below 10 is expressed by not more than two

figures. That is, the square of units cannot give a higher denomina-

tion than tens. So, likewise, it may be shown that the square of tens

cannot give a higher denomination than thousands, since the square of

99 is 9801.

The numbers, 1, 4, 9, 16, &c., and all the other numbers produced

by the multiplication of a number by itself, are called pcr/t'c^ squares.

We see that there are but nine perfect squares between 1 and 100.

The square roots of all numbers lying between 1 and 100 will be found

between the consecutive roots of two perfect squares. Thus, the square

root of 20 lies between the consecutive roots 4 and 5, being greater

than the former, and less than the latter. The square root of 26 lies

between the consecutive roots 5 and 6.
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The square root of all numbers below 10,000 may be regarded as

made up of tens and units. Thus, 99, the square root of 9801, is

made up of 9 tens and 9 units. The number 32 is made up of 3 tens

and 2 units. We have seen that the square of a number containing

two figures could not give a higher denomination than thousands ; con-

versely, the square root of thousands cannot give a number containing

more than two figures ; that is, a number containing tens and units.

284. If, then, we have to extract the square root of a number con-

taining more than three figures, and less than five, we know that its

root must contain two figures, and, therefore, be made up of tens and

units. Before we can deduce a rule for the extraction of the root of

thousands, we must know how thousands are derived from squaring

tens and units.

Let a represent the tens, and b the units, which enter into the square

root of thousands. Then, (a + by= a^ + 2ah + V^. Hence, thou-

sands arc made up of the square of the tens that enter into its root,

plus the square of the units, plus the double product of the tens by the

units.

Let us square the number 34, made up of 3 tens and 4 units, = 30

4- 4. Then, 30 corresponds to a in the formula, and h correspond.s

to 4.

Hence, a^ = (30^) = 900,

2rti = 2 . 30 . 4 = 240,

b' = (4f = 16,

Then, (34)^ = a' -f 2ab + U' = 1156.

235. If we were required to extract the square root of this number,

we would have to revei*se the process, and first take out a*, then, 2ah

and Z)l

The number, 1150, belonging to the denomination of thousands, its

root must contain tons and units, and

we must first get out the tens by

extracting the square root of the

square of the tens ; that is, the s/ «^-

Now, the square of tens will give 2a -\- b

at least three figures, therefore the 60 -f- 4

root of the tens cannot be sought in

the two right hand figures, and we,

therefore, separate them from the

others by a dot, and the given number is then separated into what are

a^ + 2ab -f //
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called pcrtoih of two figures each. The square of 30 is 900, and the

square of 40 is 1600. The number, 115G, falling between 900 and

1600, its root must contain 3 tens plus a certain number of units. We
then extract the greatest square contained in the left hand period, 1100,

and set the root, 30, on the right, after the manner of a quotient in

division. We have now found a, square it, and subtract a^ or 900,

from 1156, and the remainder must be 2oi + 1'^: in the present instance

equal to 256. The remainder, 2ah + 1j\ can be written (2a + l)h;

and it is evident that, to find h accurately, we must divide by (2a + h).

But, as the term h within the parenthesis is unknown, we are com-

pelled to use 2a as the aj)proximate divisor. We write 2a, or 60, on

the left as a divisor, and divide 256 by it, and set the quotient h, or 4,

on the right of the root found, and also on the right of the divisor.

Now, multiply the two terms on the left, 2a -f J, or 60 + 4 by Z» or 4,

and we evidently form 2a^ + ?/, the parts entering into the remainder,

256. Subtracting the two products thus formed from 256, we find no

remainder. Hence, 34 is the exact root of 1156.

We have separated the tens from

the units, to let the beginner see that

he is really taking a^ -}- 2ah + 1/ in

succession, out of the given number,

2a + h \ 2 56 = 2a6 + V^ 1156. But we might have indicated

6 4
I

2 56= 2ah + V their separation by a point above, and

written 3 4, instead of 30 + 4, and

6 4 instead of 60 + 4. When the beginner is familiar with the princi-

ples, he may omit the dots, -which are intended to guard him against

confounding the tens with the units. He must observe, however, that

this divisor being the double product of tens, is, itself, tens, and, there-

fore, if written out in full, would contain a cj'pher on its right. And

since, in dividing by a number whose right hand figure is 0, we point

ofi" that figure from the right of the divisor, and also point oif the right

hand figure of the dividend, we must be careful to do this in dividing

by the double product of the tens. In the present instance, the right

'

hand figure, 6, of the remainder 256, must be separated from the other

two figures, since, in using 6 as the divisor instead of 60, we have, in

fact, pointed off from the right of the divisor.

236. -There is one point of considerable importance that needs some

examination. In getting the second figure of the root, we used 2a as

tlie approximate divisor of the remainder, 2al> -\- 1/ =z (2a + li) h,

u'-\
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whereas, the true divisor, to find h, is plaiuly 2a + h. Our divisor

being too small, the quotient, which is the second figure of the root,

can never be too small, but may be too great. It is plain that, when h,

in the expression (2a + h), is very small in comparison with '2a, it

may be neglected. But b may be so large that the omission of it

will give too great a quotient. The square of 35 is 1225 ; the square

root of 1225 is then, of course, 35. Now, if we proceed to extract

the square root of 1225, the remainder, after taking out a", or 900,

will be found to be 325 = 2ah -\- V= 300 + 25. And we sec that

the square of the units has added 2 tens to 'lah, the double product of

the tens by the units. When, therefore, we point off 5 from the right

of 32 5, and divide 32 by 6, it is plain that the dividend, which ought

to be 2ah (if the divisor is 2a), is too great by 2 tens. The quo-

tient, then, would be too great, if the 2 tens added were divisible by

the divisor. Then the second figure of the root would be augmented

improperly by the quotient, arising from dividing the 2 tens impro-

perly added by G, or 2a. In the present case, however, if we omit the

2 tens, and divide 30 by G, we get the same quotient, 5, as when the 2

tens are retained; their addition has not, then, affected the result.

But, square 19, and we get 3G1.

In this case, h, in the expression

(2a -f 6), is not small in comparison

with 2a, and cannot, therefore, be

neglected without affecting the re-

sult. Now, if we use 2a as the

divisor of the remainder, 2ai -f W,

to find h, we ought to use lah alone

as the dividend; and, therefore, if

we use the whole of the expression, 2ah -\- V, our dividend is too great.

Dividing 26 by 2, the quotient is 13, which is plainly absurd for the

units of the root. But, we see that 180, or lah, ought to have been

the dividend corresponding to 20, or 2a, as a divisor. The 26 tens is

then too great by 8 tens ; and, since the 8 tens added, give 4 for a

quotient when divided by the 2 tens of the divisor; the second figure

of the root is too great by 4, and we must write 9 as that figure, and

not 13. The 8 additional tens in the 2G tens come from the square of

the units, and being divisible by the divisor, 2a, have improperly aug-

mented the second figure of the root. Had the 8 tens not been divisible

by 2rt, the second figure of the root would not have been increased at

all, and the quotient of lah -\- W by 2a would have truly been the
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second figure of the root. In general, whenever the square of the units

(i^) incorporate into the remainder, 2ab + Z;'^, tens which are exactly

divisible by 2a, the divisor, the second figure of the root will be too

great, and must be diminished by the quotient of the incorporated tens

by the 2a of the divisor.

237. The foregoing course of reasoning has shown that the second

figure of the root may be too great, and the cause of its being too great;

but, since the units of the root are unknown, the number of the tens

proceeding from their square, that are incorporated with 2ah, cannot

be known. We must, then, in practice, form the product of 2a + 5

on the left by the second figure, I, of the root, and compare the result

with the remainder. If the product is greater than the remainder, the

second figure must be diminished until the product is equal to the re-

mainder, or smaller than it. If the given number is an exact square,

its root will be exact, and the product will be exactly equal to the re-

mainder. When the root is not exact, the product must be made less

than the remainder.

The preceding principles enable us to deduce for the extraction of

the square root of whole numbers, embraced between 100 and 10,000,

the following

RULE.

I. Separate the two rigid hand figures from the other figxires or

figure of the given numher, and find the greatest square contained in

the left hand period, which may contain hut one figure.

II. Set the root of this greatest sq%iare on the right, after the manner

of a quotient in division. Sichtract the square of the root thus found

from the first period, and annex the second period to the remainder.

III. Double the root found and place it on the left for a divisor.

Seek how often the divisor is contained in the remainder, exclusive of

the right hand fig%ire, and place the quotient on the right of the root

already found, separatedfrom it hy a dot above. Place it also on the

right of the divisor, separatedfrom it in like manner.

IV. Midtiply the divisor thus augmented by the second figure of the

root, and suhtract the product from the first remainder. If there is no

remainder, the root is exact. Jf the product exceed the first remainder,

the second figure of the root must be diminislied until the product is

equal to or smaller than the first remainder.
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EXAMPLES.

1. Extract the square root of 225. Ayis. 15.

2. Extract the square root of 7569. Ans. 87.

3. Extract the square root of 2025. Ans. 45.

4. Extract the square root of 841. Ans. 29.

5. Extract the square root of 2500. Ajis. 50.

6. Extract the square root of 7921. Ans. 89.

7. Extract the square root ot 9801. Atis. 99.

8. Extract the square root of 4096. Ans. 64.

9. Extract the square root of 5476. Ans. 74

10. Extract the square root of 7056. Ans.- 84.

238. We have seen that the second figure of the root has frequently

to be diminished. We may diminish it too much, and it becomes ne-

cessary to know when we have made the second figure too small. The

test of this depends upon the principle, that the difference between two

consecutive squares is equal to twice the smaller number plus unity.

Let a =. smaller number.

Then, a + 1 = consecutive number, or the number just above a.

And (a + 1)^ = a^ + 2a + 1.

Their difference is 2a -j- 1, as enunciated.

Now, when there is a remainder, after finding the second figure of

the root, and subtracting the product of it by the quantity on the left

from the first remainder, it is evident tbat the second remainder ex-

presses the excess of the given number, which we may regard as

(a 4- l)'^, over the square of the two figures found. If, then, the

second remainder be exactly twice the root found plus unity, it is evi-

dent that the root found is o, and that the second figure of the root can

be increased by unity.

To illustrate, suppose 6 to be the square root of 49, (a -{- 1)^

then the remainder being equal to twice the root found 49 I a

plus unity, the root can be increased by unity. In 36 = a^ I 6

general, whenever the remainder exceeds twice the 1 ." — 2a -j- 1

root found plus unity, the root can be augmented by

unity. If the remainder is exactly equal to twice the root found plus

15
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unity, the root, increased by unity, will be the exact root of the given

number.

239. This rule is of importance in finding the square root of imper-

fect squares. Let it be required to find the square root

1 5G
1
12 of 156. We find a remainder 12, and a root 12. Is

1 12 the greatest root contained in 156 ? Is the root 12

22
I

56 plus a remainder, or 13 plus a remainder? By the

44 principle just demonstrated, the true root of 156 must

12 be 12 plus a remainder, because the second remainder

is not double the whole root found, plus unity.

240. This principle also enables us to pass from the square of a

number to the square of a consecutive number without raising the

second number to the square power. We have only to represent the

smaller number by a, then the consecutive number will be a + 1, and

its square must exceed a? by 2a + 1.

Thus, (100)=^ =r a^= 10000.

a^ (2a + 1)

Then, (101)^ == (a + 1)' = 10000 -}- 200 + 1 == 10201.

(a + 1)^ a^ (2a + 1)

So, also, (102)-^ = (101 + If = 10201 + 202 + 1 = 10404.

The following are incommensurable numbers.

1. Find the square root of 1720. J.ns.. 41 +
2. Find the square root of 1445. Ans. 38 +
3. Find the square root of 6411. Ans. 80 +
4. Find the square root of 5555. Ans. 74 +
5. Find the square root of 1755. Ans. 41 +
6. Find the square root of 1960. Ans. 44 +
7. Find the square root of 7777. Ans. 88 +
8. Find the square root of 6666. Ans. 81 +

241. If we square any number, as 12 and 55, containing two figures,

and made up then of tens and units, the square will contain two periods,

counting from the right, and it is plain that the tens can only be

sought in the periods on the left. If we square a number made up of
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hundreds, tens, and units, the square 'will contain three periods, and

the hundreds can only be found in the left hand period, and the tens

only in the second period, annexed to what is left of the first periods

after the square of the hundreds has been taken from it. In general,

the number of periods in the given number always indicate the number

of figure places in the root, and each figure of the root has its appro-

priate period or periods.

The principles that have been demonstrated for the extraction of the

square root of numbers between 100 and 10,000 can readily be ex-

tended to any numbers whatever. Let a represent the highest denomi-

nation in the root, and s all the succeeding denominations in the root.

Then the number itself will be expressed by (a -f s)-= o? -\- 2as -\- s^,

an analogous expression to (« + by= a- -j- 2ah + I/, and differing

only in its more general significance. The a in one formula is not re-

stricted to represent tens, as it is in the other, but may represent hun-

dreds, thousands, millions, &c. j and the s of the first formula is not

restricted to represent units only, but may represent tens and units,

hundreds, tens, and units, &c.

Let us square 155 by means of the formula.

Then, a = 100, and s = 55.

a' = (100)- = 10000,

2as = 200'55 =11000,
s' =(55/ = 3025,

Hence, (155)^ = 24025

We see from the formula that a, it matters not what may be its de-

nomination, must first be found; and, that after its square has been

subtracted from the given number, the remaiiuler will be 2t(H -f s" =
(2a + s)s.

The number, 24025, being greater than lOOOO, its root will be

greater than 100, and, therefore, a-

canuot be found in the two right «" + 2('s + s^

hand periods. We seek it in the 2 40 25
|
a + s

period on the left, and after placing 1 00 00
I 1 55

it on the right, and subtracting its 2a -f s I 1 40 25 = 2as + 0^

square from the given number, have 255
I
1 11 00 = 2as

14025 for a remainder. We cut off 30 25= s'

the right hand figures, because 2, the 00 00 Remainder,

approximate divisor, is really 200;

and, after trial, we find 55 to be the right hand figures of the root.
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The 55 is set on the right of the root ah-eady found, and also on the

right of the divisor. The product of 255 by 55 is 14025, and there

is, consequently, no second remainder, and the root is exact.

2-42. The approximate divisor is always large for numbers above

10000, and s can only be found by repeated trials. But the above

process can be greatly simplified by observing that, since 2a enters

into s, representing several denominations, it must enter into each de-

nomination separately. Thus, in the foregoing example, 2a, or 2,

being a multiplier of 55, is a multiplier of the first 5, regarded as 5

tens, or 50, and of the second 5, regarded as units. We might, then,

have found the 5 tens and the 5 units, separately taking care to write

the one after the other, so as to make their denomination distinct. In

the present example, 2as being equal to 2 . 55, is, of course, equal to

2 (^50 + 5) J
s may be regarded as a single term, 55, to be found at

once, or it may be regarded as made up of 50 and 5, separate terms, to

be found separately. But, if the second and third figure of the root be

found separately as independent numbers, they must be sought for in

their appropriate periods. It will simplify the work when we proceed

in this manner to subtract the square of a from the left hand period,

and bring down each term in succession. In this case, since we make

two terms of s, let s ^ s' -f s" . Then the root will be a + s" -f s",

and the number will be (a + s" + s")^, which, by performing the mul-

tiplication indicated, will give us a^ + 2os' -f- s'^ -f- 2as" + 2sV' + s"^

= a" + 2as' + s'^ + 2 {a + s') s" + i>"\ When we subtract o^ from

the left hand period,

we have, in fact,

subtracted 10000

from the given num-

ber. After the se-

cond period has

been annexed to

the remainder, the

140 truly represents

14000, and, since

the zero, on the right of 140, belongs to the denomination of hundreds,

it must be separated from the 14 when we come to seek for the tens of

the root, because /, the tens, is sought for in 2as' by using 2a as the

approximate divisor. Now, 2as' must be at least thousands, and,

therefore, the denomination of hundreds does not contain s'. We write

s, when found, on the right of the first term of the root and also on

2a + s'

2 5
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the right of the divisor. Multiplying the divisor thus augmented by

s' in the root, and subtracting the product from the first remainder, we

will plainly have left, after annexing the next period, 2 (a -f s').s"+ s"^.

And we see that the approximate divisor to find s" is 2 (a + s'). The

whole root already found mu.st then be doubled and used as our approxi-

mate divisor. The right hand figure of 1525 is cut off, because

2 (a + s')s" gives at least hundreds. After s" is found, we multiply

'1 (a -\- s') by it, and have no remainder; the root is then exact. We
have used the broken line, in the above example, after each minuend

and subtrahend to indicate that there were other numbers to follow

them.

(a + i/ + a" + a'"/

2 98'59"84
i a + s' + s" + «'"

1 98 = 2as' + s" + &c.

1 89 rr= 2r,s' + s"

9

2a +
27

(„ + /) + ," 9 5 9 =2{a+ sy + s" -f &c.

34 2

2(a + s'+ s")+ i

3418

684 = 2 (a + s')s" +
2 7 58 4 =zz 2 (a + s' -f /')•>'" + «"" + &c.

2 7584== 2 {n + a' + 6-").s"' + s"'\

If wc have a number made up of 4 periods, as 2 98 59 84, we know

that its root must contain 4 figure places, which may be represented by

a, s', ,s", and s'". And the given number must then be equal to

(a 4- s' + s" + s'")^ = a"" + 2as' + s" + 2 (a + s')s"+ s"^ + 2 (a+sf

We sec, then, that 2a is the approximate divisor to find .s', the

second figure of the root
;
(2a + s') the approxim-ate divisor to find s",

the third figure of the root; and (2(a-\-sf) + s") the approximate di-

visor to find s'", the units of the roots. In other words, we see that

the whole root found has to be doubled to find each figure of the root

succeeding those already found. It is evident, too, that the right hand

figure of each of the successive remainders must be cut off previous to

dividing by 2a, 2 (a + s'), &c., because in all these remainders that

figure is of too low a denomination to make any part of the product of

the figure of the root sought by the approximate divisor. Thus,

8, which belongs to the denomination of tens of thousands, cannot

be a part of the product arising from multiplying 2a, or 2000, by s',

which is hundreds. This product must give at least hundreds of

thousands.

15*
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243. It is plain tliat^ from the manner in which tlie square of any

number of terms is formed, the foregoing demonstrations for numbers

having two, three, and four periods are general ; and we, therefore, have

for the extraction of the square root of any number whatever, the

general

I. SejxtJ'ate the given number into periods of two figures each, begin-

ning on the right; the left hand period may contain but one figure.

II. Find the greatest square contained in the left hand period, and

set its root on the right, after the maimer of a qxiotient in division.

Subtract the square of the root foundfrom the left hand period, and to

the remainder annex the second period, and use the number tints found

as a dividend.

III. Doidjle the root found and p>^(-^ce it on the left for a divisor.

Seek how often the divisor is contained in the dividend exclusive of

the right hand figure, and place the qtiotient on the right of the root

already found, and separate the two figures by a point. Set the quo-

tient also on the right of the divisor and separate in like manner.

IV. Multiply the divisor thus increased by the second figure of the

root, subtract the product from the dividend, and to the remainder

annex the second period of the given number. Use the remainder and

annexed period as a new dividend.

V. Double the whole root found for a new divisor, and continue the

operation as before until all the periods are brought down.

Remarks.

244. If the last remainder is zero, the given number is a perfect

square. But, if the remainder is not equal to zero, we have only found

the entire part of the root sought, and the given number is incommen-

surable.

245. If we take 155, the square root of 24025, we observe that 15

has been derived from the two left hand periods. We might, then,

after finding 5, have squared 15, and subtracted its square from 240.

So, after finding the last 5 of the root, we have subtracted the square

of 155 from the three given periods. In general, when we have found

two figures of the root, or three figures, or four figures, &c., we may

subtract their square from the two left hand periods, or the three left

hand periods, &c.
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GENERAL EXAMPLES.

1. Extract the square root of 16008001. Ans. 4001.

2. Extract the square root of 4937281. Ans. 2222.

3. Extract the square root of 1111088889. .4ns. 33333.

4. Extract the square root of 1975304G913G. Ans. 444444.

5. Extract the square root of 36000024000004.
Ans. 6000002.

6. Extract the square root of 12.59631362889. Ans. 1122333.

7. Extract the square root of 15241383936. Ans. 123456.

8. Extract the square root of 16080910030201.
Ans. 4010101.

9. Extract the square root of 123456787654321.

Ans. 11111111.

10. Extract the square root of 12345678987654321.

Ans. 111111111.

11. Extract the square root of 308641358025. Ans. 555555.

OF INCOMMENSURABLE NUMBERS.

246. An incommensurable number is one whose indicated root can-

not be exactly extracted. Thus, the \/2, V8, and \/27 are incom-

mensurable numbers. Such numbers are also called irrational num-

bers, ajid sometimes surds.

We have indicated (Art. 240,) that the roots of imperfect square

powers were not complete by writing the sign + after the entire parts

of those roots. So we may write the -v/ 5 := 2 -f . The number 5

lying between 4 and 9, the square roots of which are 2 and 3, its own

root will be greater than 2, and less than 8. May not this root, then,

be expressed by some fraction whose value is greater than 2, and less

than 3, such as |, or | ? May not the roots of all imperfect square

powers be expressed by vulgar fractions in exact parts of unity ?

To prove that this cannot be, we will demonstrate a theorem upon

which depends the proof of its absurdity.

Theorem.

247. Every number^ P, which will exactly divide the product,

A X B, of two numbers, and which is prime with respect to one of

them, will divide the other.
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Let A be the number with which P is prime. Let Q be the qua

tieut arising from dividing AB by P, then -t—- = Q. We may put

this equation under the form A X ^tj = Q. Now, Q is, by hypothesis,

an entire number; the second member being a whole number, the first

member must also be a whole number, else we would have an irreduci-

ble fraction equal to a whole number, which is absurd. The product

of A into r— has then to be entire ; now, A itself, is entire and prime

T)

with respect to P, hence, — must also be entire. For a whole number,

multiplied by a fraction, can only give an entire product when the

whole number is divisible by the denominator of the fractfon into which

it is multiplied. Thus 4, a whole number, multiplied by the fraction

#, gives an entire product, because 4 is divisible by 2. But 5 into |

does not give an entire product, because 5 is not divisible by 2. Now,

the whole number A is, by hypothesis, not divisible by the denomina-

B B
tor, P, of the expression p- ; the product of A by ^15- cannot, then, pos-

sibly be equal to the whole number, Q, unless B is divisible by P.

248. We are now prepared to show that the square root of an im-

perfect square, such as 5, cannot be expressed by a fraction. If the

root of 5 can be expressed by a fraction, let — be that fraction, a being

greater than h, and prime with respect to it. We assume a and b to

be prime with respect to each other, because, otherwise, their quotient

would be a whole number, and we know that the root of an imperfect

power is found between two whole numbers. We have, then,

y/5'= — . From which, by squaring both members, there results

5 = -y^- The first member of this equation being a whole number,

the second member must be a whole number also. But —^ cannot be

a whole number unless a^ is divisible by I ; for, to divide a^ by b^, is

to divide it twice by b. Of course, then, if a^ is not divisible by b, it

cannot be divisible by b^. But a^ is not divisible by h, for, by the fore-

going theorem, a number which exactly divides the product of two

factors, and is prime with respect to one of thenj, must divide the
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otter. Now tte factors of o^ are a and a ; 6 is prime with respect

to the first factor, it must then divide the second in order to give an

entire quotient. This is plainly impossible, since the second factor is

the same as the first; a^ is, then, not divisible by h; still less, then,

can a^ be divisible by Ir. The equation 5 = — must, therefore, be

absurd ; but that equation has been truly derived from the equation

v/?= -r- A correct algebraic operation has led to an absurd result

:

b

but this can only be so when the assumption at the outset, upon which

the operation is based, is absurd. The assumption, •>/~o= — was ab-

surd, and it has led to an absurd result.

The foregoing reasoning has been in no way dependent upon the

fact that 5 was the particular imperfect power under consideration, and

is, therefore, general. We conclude, then, that the square root of no

imperfect power can be expressed by an exact fraction.

EXTRACTION OF THE SQUARE ROOT OF FRACTIONS.

249. Since the square of a fraction is formed by squaring the nume-

rator and denominator separately, it follows that the square root of a

fraction must be taken by extracting the square root of the numerator

and denominator separately.

Thus, ^^ = 'j, since -5X3= |.

,0, also, \/'jr, = j, because j X - =
-^,

We may remark that all square roots can be affected with either the

positive or negative sign, if these roots are regarded as algebraic quan-

tities. Thus, the \/| may be either + |, or — |, because — | X —
„ . „ , / a^ 1.1 (I a . a
I = |. ho, also, \ / 71 iii'^y be either -f — , or — — ; since — y,

multiplied by itself, gives y^.

1. Extract the square root of ^^.

2. Extract the square root of /g. Ans. |, or — |.

3. Extract the square root of i. Ans. ^, or — |.

M
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r 1 m -^ /8 X 5 X 5 X 5 /lOOO 31 , _.
found. Thus, v & = \ / t e 5 f = V / ^^^T^ = ^ +• The

' " V 5 X 5 X 5 X 5 V G2o 25

true root is greater than |4, and less than -^'i. Hence, |i diflfers from

the true root by a quantity less than ^'^.

253. When the denominator and numerator are both imperfect

powers, as in the example just given, we may make the numerator a

perfect power by multiplying both terms of the fraction by the first, or

some odd power, of the numerator. But, in this case, the degree of ap-

proximation is not immediately appai-ent. Thus, \/| = v/k 5 =
I approximatively. The true root is greater than |, and less than |.

The degree of approximation can only be determined by reducing these

fractions to a common denominator. We have, then, ^8^ and |ij, and

their diifercnce is ^^tj. Then, ^| differs from the true root by a

quantity less than ^%. And ||, or §, also differs from the true root

by a quantity less than ^%. It is plain that the degree of approxima-

tion can be more readily determined by making the denominator ra-

tional than by making the numerator rational. It is even preferable to

make the denominator rational when the numerator is already so.

though the process of making the denominator a perfect square make
the numerator irrational. Thus, to find the approximate root of |, place

^^~ V 5X 5- ^55-5+-

254. If the denominator is already rational, we have only to extract

its root for a new denominator, and write over it the approximate root

of the numerator for a new numerator.

We have, then, for finding the approximate root of any fraction, both

terms of which are not rational, the following

EULE.

Mahe the denominator rational, if not already so, hy nudtiplyhuj

loth terms of the fraction hy the first, or some odd poicer of the denomi-

nator, according to the degree of approximation required, so that the

denominator of the given fraction shall he the square power of the de-

nominator of the fraction that marks the degree of approximation.

Then extract the root of the denominator for a new denominator, and
torite over it the approximate root of the numerator for a neio numera-

tor. Affect the nexo fraction with the douhle sign, to indicate that there
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arc txco roofs equal, n-ith contrary air/iis. If the denominator be

already rational, and a greater drgree of ajjproximation is required

than that indicated hy unity divided hy the root of the denominator,

mvltijjly hoth terms of the fraction hy the third, fifth, seventh power,

d-c, of the denominator, according to the degree of approximation

required, and proceed as hefore.

EXAMPLES.

1. Extract the square root of J to witliin less than h of its true

value. -^ns. ± *.

2. Extract the square root of I to within less than i of its true

value. ^«s. ± |-.

. 3. Extract the square root of I to within less than h of its true

value. ^"s. ± h.

4. Extract the square root of | to within less than j'g of its true

value. Ans. ± ||.

5. Extract the square root of | to within less than 1 of its true

value. -Ans. zfc |, nearer 4 than |.

6. Extract the square root of f to within less than ^V of its true

value. Ans. ± ^|.

7. Extract the square root of -^^ to within less than ^'^^ of its true

value. Ans. ± ^o.

8. Extract the square root of -^^ to within less than ^^^ of its true

value. Ans. ±: f
|fi.

In the first example, the multiplier of both terms of the fraction is

2; in the second, (2)^; in the third, unity; in the fourth, {-^f; in

the eighth, (27)^

255. Since the denominator of the fraction may be raised to as high

an even power as we please, it is evident that the degree of approxi-

mation can be made as close as we choose to the true value of the

fraction.

256. We may, by a similar process, determine approximatively the

roots of incommensurable numbers to within less than unity, divided

by any whole number.

Let it be required to determine the square root of 2 to within less
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than 1 of its true value. Then, v/2 = \

/

" ^ }^^ = V-]| = | +.

The true value lies between § and §, and, therefore, | differs from the

true value by a quantity less than i. We multiplied and divided the

given number by the square of the denominator of the fraction that

marked the degree of approximation required. This, of course, did not

alter the value of the given number, it simply placed it under the form

of a fraction with a rational denominator. The nest step was to ex-

tract the root of the numerator to within the nearest unit, and to write

the result over the exact root of the denominator.

To demonstrate a general rule applicable to any number, and true for

any degree of approximation, let a be the number, and — the fraction

that marks the degree of approximation. Then, -^"(7= -v / ^—

.

Let J* denote the root of ojtMo within less than unity; in other

words, let r denote the entire part of the root of an''. We will then

have Va = \/-^ > \/^, or -, and < \/^-^, or -—

.

)• ?•-+-

1

The true root of a, then, lies between the numbers — and , which
n n

differ from each other by — . Hence, — differs from the tme root by

1 ?• + 1
a quantity less than — . So, also, differs from the true root by

1 r
a quantity less than — . We then have a riuht to take either — , or

n ^ n
r 4- 1

, for the approximate root. That one is taken to which the root

lies nearest.
,

To find the approximate root of any number, a, to within less than

— of its true value, we have the following

Multiply and divide the given numler hy the square of the denomi-

nator of the fraction that marks the degree of ajyproximation. Ex-
tract the root of the numerator of the fraction thus formed to within the

nearest unit, and set the resvlt over the exact root of the denominator.

Give the doidjle sign to the root.

16
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EXAMPLES.

1. Extract the square root of 2 to within less than ^ of its true

value. ^«s- ± I-

2. Extract the square root of 50 to within less than J of its true

value. ^i«s. ± 2_8.

3. Extract the square root of 50 to within less than -J^ of its true

value. -^'Ihs. ± %^.

4. Extract the square root of 50 to within less than ^^^ of its true

value. ^ns. ± fM.

It is obvious that, by increasing the denominator of the fraction that

marks the degree of approximation, we may make the approximate in-

definitely near to the true value of the root of the given number.

257. Apiiroxlviate roots of wliole numhers expressed dedmally.

To extract the root of any whole number, a, to within any decimal

<if its true value, we have only to change the decimal into an equiva-

lent vulgar fraction, J^, ji^, or whatever it may be, and then multiply

both terms of the fraction by 10^ 100', &c. Whatever the decimal,

which marks the degree of approximation, may be, it can be changed

into a vulgar fraction,
^^

; in which m is a positive whole number,

^n-eater by unity than the number of cyphers between the decimal point

and first significant figure. Thus, -1 = -y—-„ and m = 1 ; -01 = -j^^'

and m = 2 ; -001 = —y-^, and m = o.

j_ la {\n-
Hence, -J a =^ W —

-. ^
^,^

•

Representing the entire part of the root of a (lO)^" by r, there re-

/« (107"> ^ r >• + !

Hence, -z is the true root to within less than ; that is.

(10)"' (10)"

—— differs from the true root by a quantity less than . Now,

multiplying the given quantity, a, by (lO)^-", is the same as annexing
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2m cyphers; for, multiplying it by (10)^, annexes 2 cyphers; by (lO)'',

annexes 4 cyphers; by (10/, S cyphers, &c. And dividing the ap-

proximate root found, r, by (10)°" is plainly the same as cutting off

from the right of the root found m places for decimals, for to divide

the root by (10)', (10)^, (10)^ is the same as cutting off from the right

one, two or three places of decimals. Hence, to approximate to the

true root of any given number to within a certain number of decimals,

we have this

RULE.

Annex tioicc as many cyphers to the given ninnher as there are deci-

mal places required in the rout, extract the root of the number thus in-

creased to toith in the nearest unit, and cut off from the right the re-

quired number of decimal places.

EXAMPLE.S.

1. Required v/2 to within 1. Ans. 14.

2. Required v/2 to within 01. Ans. 141.

3. Required v/U to within -001. Ans. 1414.

4. Required v/50 to within -01. Ans. 7-07.

5. Required V'SO to within -001. Ans. 7-071.

6. Required v/"o0 to within 0001. Ans. 70710.

7. Required ^9000 to within -1. .l/is. 94-8.

8. Required ^9000 to within -01. Ans. .94-86.

9. Required v/ 900(7 to within -OQl. Ans. 94-869.

10. Required V 145 to within -01. Ans. 12-04.

11. Required v/T45'tp within -001. Ans. 12-041.

12. Required s/ 1000 to within -001. .4ns. 31-622.

1% Required v/lOOO to within -0001 Ans. 31-6227.

14. Required V lOOOOO to within -01. Ans. 316-22.

15. Required yiOOOOO to within .001. Ans. 316-227.

Examples 12 and 14 show that, to pass from the root of any number

to the root of a number 100- times as great, we have only to remove the

decimal point one place further to the right. The converse is evi-

dently true also.
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MIXED NUMBERS.

258. The approximate root of mixed numbers can now readily be

found. Suppose it be required to find the approximate root of 2-5 to

witliin -1. If we annexed two cyphers, as before, the result would be

2500
J
and then, when we shall have come to point off" into periods, the

whole number, 2, will be united with the decimal 5. The root found will

be 5, which is plainly absurd. But, 2-5, changed into an equivalent vul-

gar fraction, is fg. Hence, by the rule for vulgar fractions, v/2-5 =
N^fl = \/y§§ = t|+= 1"5 + • We see, that in the present instance,

we hav^ annexed a single cypher, which made the decimal places even,

and double the number of places required in the root. We next

pointed off from the root the number of decimal places required. If we

are required to find the approximate root of 2-5 to within ^i^,
yj^^, or

•01. Then, V2^ = v/fl - \/'^\ll^^ = iB§ - 1-58- We

have, obviously, added three cyphers to 5, and, therefore, made the

number of decimal places even and equal to the number of places re-

quired in the root. In pointing off for decimals, we have only pointed

off two places, the number required in the root. To demonstrate

the rule in a general manner, let a be the entire part of the mixed

number, and ^z—;^ the decimal part. Then the given number will be

h
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merator, when multiplied by this power of 10, will have its number of

decimal places even, and equal to double the number of places required

in the root.

Annex cyphers until the mauler of decimal places in the mixed

number is even, and equal to double the mimber ofplaces required in

the root. Extract the root of the result to xcithin the nearest unit, and
then point off from the right, for decimals, the number of decimal

places required in the root.

EXAMPLES.

1. Extract the square root of 4-9 to within -1 Ans. ± 2-2.

2. Extract the square root of 4-9 to within -01. Ans. rb 2-21.

3. Extract the square root of 4-9 to within -001.

Ans. =fc 2-213.

4. Extract the square root of 4-25 to within -01.

Ans. =t 2-OG.

5. Extract the square root of 425 to within -001.

Ans. ±2001.
6. Extract the square root of 9G-1 to within -1. Ans. ± 9-8.

7. Extract the square root of 9-Cl to within -1.

Ans. ±3-1 exactly.

8. Extract the square root of 145-755 to within -01.

Ans. ± 12-07.

9. Extract the square root of 14575-5 to within -1.

Ans. it 120-7.

10. Extract the square root of 101-7 to within -01.

Ans. ± 10-08.

11. Extract the square root of 1001-01 to within -1.

Ans. ± 31-6.

12. Extract the square root of 10-0101 to within -01.

Ans. ± 3-16.

13. Extract the square root of 1728-555 to within -01.

Ans. ±41-57.

14. Extract the square root of 172855-5 to within -1.

Ans. rb 415-7.

16*
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15. Extract tlio square root of 17285550-666 to within -01.

Ans. ±4157-58.

IG. Extract the square root of 1728555066-6 to within -1.

Ans. zfc 41575-8.

ROOTS OF NUMBERS ENTIRELY DECIMAL.

259. Let it be required to extract the square root of -4. This deci-

mal, changed into an equivalent vulgar fraction, is j%. Hence, v/ -4 —
y/-A^ = v/j''g% ^ y^o,

^^^ <C /o- Hence, -6 is the approximate root

to within less than -1.

We see that the number of decimal places was made even before the

root was extracted.

If we were required to extract the square root of -4 to within -01,

•001, the denominator of the equivalent vulgar fraction must be made

(loy, (io)«.

The decimal fraction can be written --—

.

10™

/ ^' n^ X (10)- ^ r
,
^r + 1

Hence, s/ ^^ = \/ -^j^jy^ > ^^., and < --.

It is plain that the multiplication of h by (10)"" makes the number

of decimal places even. In pointing off for decimals, as many places

must be cut off from the right as there are periods.

RULE.

Aiinex cyphers to the given decimal until its places are even. Ex-

tract the root of the result, as in ivhole numbers, and cut off from the

right, for decimals, as manij places as there are periods in the numher

ivhose root was extracted. If it he required to extract the root to

within a certain decimal, annex cyphers until the numher ofperiods is

equal to the numher ofplaces required in the root.

EXAMPLES.

1. Required V"^, Ans. db -5 exactly.

2. Required %/ -9 to within -1. Ans. =b -9t

3. Required V"-09. Ans. d= -3 exactly.

4. Required v/-009 to within -01. Ans. ± -09.
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5. Kequired v/-0009. Ans. ±z -03 exactly.

6. Required v/-725. Aus. d= -85 exactly.

7. Required n/-U725 to within -01. --I'^s. ± -27.

8. Required v/ -00725 to within -001. Ans. ± -085.

9. Required V~^. Ans. ± -9 exactly.

10. Required v/-00«l. Ans. rb -09 exactly.

11. Required v/ -00081 to within -001. Ans. ± -028.

12. Requtred V"^000081. Ans. =b -009 exactly.

13. Required V 0000081 to within -0001. Ans. ± -0028.

14. Required v/-0U4. Ans. ± -12 exactly.

15. Required V -04937284. Ans. ± -2222 exactly.

16. Required V -05555555 to within .0001. Ans. ± -2357.

17. Required V -1111088889. Ans. ± -33333 exactly.

These examples show that the roots of decimals are greater than the

decimals themselves. This ought to be so, for all purely decimal num-

bers can be changed into proper fractions.

SQUARE ROOT OF FRACTIONS EXPRESSED DECIMALLY.

260. Vulgar fractions may be changed into decimal fractions, and

then their roots may be extracted by the last rule. If the given frac-

tion be mixed, it must be first reduced to an improper fraction and

then changed into an equivalent decimal fraction.

EXAMPLES.

1. Required V'J = %/ -6606 = + -81. Ans. d= -81.

2. Required y/~i = V'^- Ans. =t -5 exactly.

3. Required v^^ = v^llllllll. Ans. ± 3333.

4. Required ^~^ = v/-0625. Ans. ± -25 exactly.

5. Required J^j = s/ 012345079012. Ans. =b -111111.

6. Required VT to within -01. Ans. ± -86.

7. Required V2|^5 to within -01. Ans. ± 158.

8. Required v/2l. Ans. ±15 exactly.

9. Required y J~ to within -001. Ans. d= -301.
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10. Required Vl2f^ to within -001. Ans. ± 3-523.

11. Required V251 to within -001. Ans. ± 5-011.

12. Required V'S^^ to within -01. Ans. ± 2-25 exactly.

The foregoing examples show that a vulgar fraction, which is a perfect

square, may or may not have an exact root when changed into a deci-

mal fraction.

261.— GENERAL EXAMPLES. »

1. Required V48303584-4856 to within -001.

A71S. do 0950-078.

2. Required ^ 25012001-44 to within -1.

Ans. ± 5001-2 exactly.

3. Required ^-0289 to within -01. Ans. ± -17 exactly.

4. Required V -000144 to within -001. Ans. ± -012 exactly.

5. Required V^^ to within -001. Ans. ± -242.

6. Required ^/^ to within -001. Ans. ± -125 exactly.

7. Required v/^|^ to within -0001. Ans. ± -0G25 exactly.

8. Required v/^oW *« ^i*^^"" -00001.

A71S. ± -03125 exactly.

9. Required V1728 to within -001. Ans. ± 41-569.

10. Required v/1728 to within jl^. Ans. ± 6j?^8_6.

11. Required V16|l| to within -001. Ans. ± 4-103.

12. Required v/^'^ to within -1. Ans. ± -2 exactly.

13. Required s/~^ to within -00001. Ajis. db -03703.

14. Required V^j to within -00001. Ans. ± -01234.

EXTRACTION OF THE CUBE ROOT OF NUMBERS.

262. The cuhe or third power of a quantity is the product arising

from taking the quantity three times as a factor. Thus, the cube of

m is m X m x m = m". The cube root of a quantity is one of the

three equal factors into which the quantity can be resolved. The pro-

cess of extracting the cube root consists, then, in seeking one of the

equal factors which make up the given quantity. When the quantity

can be exactly resolved into its three equal factors, it is said to be a
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perfect cube. But, when one of its factors can only be found approxi-

uiatively, it is said to be an incommensurable quantity, or an imperfect

cube. Thus, ^S, and ^^27 are perfect cubes; but -i/y, and </2i5 are

incommensurable, or imperfect cubes.

The first ten numbers are

1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

and their cubes

1, 8, 27, 64, 125, 216, 343, 512, 729, 1000.

Reciprocally, the numbers of the first line are the cube* roots of the

numbers of the second line.

We see, by inspection, that there are but nine perfect cubes among

all the numbers expressed by one, two, and three figures. All other

numbers, except the nine written above, expressed by one, two, or

three figures will be incommensurable, and their roots will be expressed

by whole numbers plus irrational parts, which can only be determined

approximatively. Thus, the ^d consists of the whole number 2, plus

an irrational number. Because 9 lies between 8, whose cube root is 2,

and 27, whose cube root is 3. By a course of reasoning similar to that

already employed (Art. 248), it can be shown that the cube root of an

imperfect cube, as 9, cannot be expressed by an exact vulgar fraction.

For, if it can, let — be that vulgar fraction : then, ^'Wz=—, or 9 =:
6

^
6

-J. But, if— be an irreducible fraction, from what has been shown,

7T- must be an irreducible fraction, and we then have a whole number

equal to an irreducible fraction, which is absurd. And, since the

generality of the reasoning has not been affected at all by the selection

of the particular number, 9, we conclude that the root of an imperfect

cube cannot be determined exactly.

Before demonstrating a rule by which the roots of perfect cubes can

be determined, or the roots of imperfect cubes found approximatively,

it will be necessary to examine the manner in which a cube, or third

power, is formed. When the number contains less than four figures,

its cube root, or the entire part of that root, must be found among the

first nine figures. When the number contains more than three figures,

its root must be made up of a certain number of tens and units. Let

a= tens of the root, and b= the units of the root. Then, the number

will be (a -f ly. And, by actually lijultiplyiug (a + l>) the required
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number of times, we will get (a + bf = a^ + Sa^b -f Sab^ + i^.

l''hat is, a number, whose root is made up of tens and units, is equal to

the cube of the tens, plus three times the square of the tens by the units,

plus three times the product of the tens by the square of the units, p>his

the ctibe of the units.

The formula may be written (a + bf = a^ + (Sa^ + Sab + V^h.

And we see that the first thing to be done is to extract the cube root

of a", then the tens (represented by a) will be known. It is obvious,

too, that the true divisor of the remainder, after a^ has been taken out,

to find b, or the units, is the coefficient of b, (3a^ + Sab -f V^)
',
but.

since b is unknown, the last two terms of this coefficient, Sab and //,

are unknown. Hence, we are compelled to use Sa^ as an approximate

divisor of the first remainder to find b. Now, b, thus found, will, in

every case, be too great, because the divisor has been too small ; but it

may happen that when b is small, the addition of Sab + b^ to Sa^ would

)iot diminish the quotient b by unity, and then there will be no error

committed in assuming b to be the true quotient, provided we increase

our divisor by Sab -\- b^, and form the parts that enter into the first

remainder.

We will illustrate by an example. Let it be required to extract the

cube root of 1728.

We begin by separating the three right hand figures, because the

(I + b cube of

Srt^ =300 l'72S 12 the tens

(Sa -\-b)b = (SO i- 2)2= 64 1000= a^ must be,

(Sa' + Sab+P) =364 72S = (Sa'+ Sab+ b')b ^^ ^^''^^'

728=(Sd^+ Sab+ b^)b
thousands,

and, there-

fore, cannot be contained in the right hand period. We next seek the

greatest cube in the left hand period, which is really 1000 ; the root is

one ten, or 10, we set it on the right, after the manner of a quotient in

division. Sa^, or 300, is assumed as an approximate divisor of the

remainder after a*, or 1000, has been taken from 1728. The remain-

der, 728, being represented by (3(t'^ + Sab + li^)b, the true divisor to

find b is, of course, the parenthetical coefficient of b. Having found b,

or 2, by means of the approximate divisor, we set it on the right of the

ten, separating it by a point to indicate that it is of a different denomi-

nation. We next add {Sa + b)b, or 64, to Sa^, or 300, and we have

364 for the true divisor, provided that b has been found correctly.

This divisor we will call the supposed true divisor. Finally, we multi-
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ply (3a^ + Sah + ¥, the supjjosed true dioisor by h, and the product

made up (3a^ + 3a6 + i^)i, the parts entering: into the remainder.

The product thus formed being exactly equal to the remainder, proved

two things : first, that if the true, instead of the approximate, divisor

had been used, h would not have been diminished by unity; and,

second, that the number 1728 is an exact cube, and that its root is

12. Iq the present example, it is easy to see why b was found

correctly by using the approximate instead of the true divisor ; a and

h being both small, the omission of ^ah + V^ did not materially aifect

the divisor.

\V'e have, from the foregoing, a simple test by which to ascertain

whether h, found by using the approximate divisor, 3o^, must be di-

minished. "Whenever the supposed true divisor will give a less quo-

tient than I, we conclude that h was too great, and it must be dimi-

nished by 1, 2, &c., until the supposed true divisor will enter into the

remainder the same number of times as the approximate. It will never

happen when the unit figure of the root is small with respect to the

tens, as in 71, 82, 93, &c , that the h, found by using 3a^ as a divisor,

must be diminished by unity, or some greater number. But, when the

unit figure is great with respect to the tens, as in 18, 19, &c., it may
be necessary to diminish h by one or more units. The reason of this

is plain. We will illustrate by an example. Kequired the cube root

of 5832.

"We see that i, found by using 30^^ as a divisor, is IG, and the sup-

posed true divisor will

then be 1036; but this, 5832
]

instead of entering IG 3a' =r 300 1000

times into the remainder, (30 + 16)16 = 736 4832
^'

4832, will only enter 4 (1036)16 = 16576

times. Besides, 1036, or

the supposed (3a^ + ^ah + b^), when multiplied by b, will give a pro-

duct, 16576, greater than the remainder. The unit figure is then too

great, and has to be diminished by 8 ; this diminution can only be

determined by trial. The process ought to have been
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The true divisor by trial was found to be 604. This divisor was repre-

sented by (3a^ + Sah + J/), and, when multiplied by b, or 8, gave

(Sa^ + Sab + V)b, the remainder.

Take,. as another example, G859.

6 859
I

a-\-b

3a^ =300 1000
I

19

(3a + &)i= (30 + 9)9 = 351 5 859 = (3a^ + Sab + h^j

3a2 + Sah -^W = 651 5 859 = (3a^ + Sab + W)b

By trial, 9 was found to be the second figure of the root, the sup-

posed true divisor was then determined to be 651, and this, multiplied

by b or 9, gave 5859. The given number was then a perfect cube, and

19 its exact root. In this case, the supposed true divisor is actually

the true divisor.

263. The process for extracting the cube root of a number below

10000 may be without any difficulty extended to all numbers whatever.

Suppose the number to be 1881365963625, its root may still be re-

garded as made up of tens and units, the cube of the tens cannot enter

into the last three figures, 625, on the right, and they may, therefore,

be separated from the other figures. The greatest cube contained in

1881365963 must have more than one figure in its root, because the

number is greater than 1000, which contains two figures in its root.

Then the root of 1881365963 may be regarded as made up of tens and

units ; and, as the cube of the tens cannot give a less denomination

than thousands, the tens cannot be found in the last three figures, 963,

which may, therefore, be separated from the other figures. After the

separation of 963 the foregoing reasoning may be repeated, and thus

dividing the number into periods of three figures until we come, at

length, to the place occupied by the cube of the tens of the highest

order. The period on the left thus found, may contain but one figure,

as in the present example, or it may contain two figures, or even three

figures. We will designate the tens of the highest order by a', those

of the second order by a", those of the third by a"', &c. In like man-

ner, we will designate the units of the highest order by U, those of the

second order by b", &c.
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Sa'ariSOOir 1st Ap. divisor. 1881365*963*625 I l'2'3*4*5

(30+2)2= &i=(Sa'+b')b' 1000 _|
3a'a+3a'6'+6'2=:3B4=True divisor. SSI—(Za'^+3a'b'+1/^)1/+

64=(3a'+i/)// 728=(3a'^+3a'6'+6'2)6'

4=6'^ 153 365=(.3a"2-j-3a"?y'+fr"a)6"-i-

3a"!»=43200=2d Ap. divisor. 132 ^Q~=(5a"^-{-3a"h"^+b''^)V

(360 -f3)3= 10%9=(Za"+h'')b" 20 498 365=(3a"'a+3a"'V"+i/"3)6"'+

44289=True divisor. 18213904=(3a"'a+3a"'i/"+^"')6"'

10S9=(3a"+i"j^" 2 285 059 625= (3a""»+3<i""J/"'+6"">)6""

9= h""^ 2JS5^59625=(3a"">+3a""&""+6""»)V"
3ri"''=4.o38T00=3d Ap. divLsor.

(3090+4)4= 14-76=<3a"'+6"0V"

4553476=True divisor.

14776=(3a"'+6"')'/"

16=6'"^

(3a''')»=45O>)20S0O=4th .\p. divisor

(37026+5)5= 185125

45701 ly25=True divisor.

lu this example, we begin by dividing the nuuiber off into periods

of three figures each ; the period on the left contains but one figure.

We extract the greatest cube contained in this period, and set the root,

1, on the right. We then have found a', or the tens of the highest

denomination. We then bring down the next period. Now, since but

two periods are under consideration, the a', or 1, found, will be tens

with respect to these two periods, and therefore, three times its square,

or 3a'^ = 300. This is, then, the first approximate divisor. Dividing

881 by it, we get 2, or the supposed units contained in the root of the

two left hand periods, we then add 64, or (Sa' + ?/)6', to the approxi-

mate divisor, and, if U be the true units of the root, 364, or 3a'^ -f

SaU + h'^, will be the true divisor. Now, since 364 enters into 881,

the same number of times that 300 does, b' has been found correctly.

We, therefore, multiply 364 by 2, and we form the three parts, (Sa'^

+ 'dab' -\- b'^)b', of which the remainder, 881, is composed, except

some tens and units which have been incorporated in it from the cube

of the tens of a lower denomination. We subtract 728 from 881, and

bring down the next period. Now, the next approximate divisor is

plainly three times the square of 120, or 43200. But the shortest way
of getting three times the square of 120 is to add 64, and the S({uare

of b', or 2, to the true divisor, and multiply the sum of the three by

100. The reason of this is apparent. The tens of the next denomina-

tion is found by dividing 153365 by 43200 ) the quotient 3 is set on

the right of the 2 in the root, separated from it by a dot. We next

add 1089, or (3a" + b")b", to 43200, and we have the second true

divisor. Multiplying this divisor by 3, and subtracting the product

from 153365, and bringing down the next period, we have a new

17 N



194 FORMATION OF THE POWERS AND

number, the root of whose unit is to be found. The approximate di-

visor to find h'" must be three times the square of 1230 ; and this is

most readily found by adding 1089 and the square of h", or 3, to

43200, and multiplying the sum by 100 ; that is, annexing two cyphers

to the sum. The approximate divisor thus found, 4538700, enters 4

times in 20498365, and the true divisor, when formed, enters the same

number of times ; 4 is then, truly, the fourth figure of the root. Mul-

tiply 4538700, the true divisor, by the last figure of the root, subtract

the product from 20498365, and bring down the next period. The

next approximate divisor is three times the square of 12340 ; this can

readily be formed like the preceding. The true divisor is formed when

5, the final unit, has been determined. The true divisor, multiplied

by 5, gives a product equal to the last remainder. Hence, the given

number is a perfect cube, and 12345 is its exact root.

The reason of the above process becomes very plain upon a slight

examination. It was established at the outset, that the tens and units

contained in the first two periods could be sought, independently of the

other periods. Having found found 1 ten and 2 units in the first two

periods, it is plain that this number, 12, is the tens in 123, the root

found in the first three periods. So, 123 may be regarded as the tens

of the first four periods. The root found in these periods is 1234,

made up of 123 tens and 4 units. In like manner, 1234 may be re-

garded as the tens of the root of the whole five periods. In fact, the

root found, 12345, is made up of 1234 tens and 5 units.

We then had tens of different denominations, 1 ten, 12 tens, 123

tens, and 1234 tens. To apply the general formula, (a -f lif = a' +
3«^& -f ^aW -f 1/, for the cube of a number made up of tens and units,

to determining the tens and units contained in any two consecutive

periods, it became necessary to distinguish the tens by dashes to indi-

cate the denomination to which they belonged.

We will add another example, to show more fully the application of

the preceding principles. Required the cube root of 997002999.

Sa"* = 24300 = App. divisor. 997'002'999
I 99 9

(3a' -i- h')V = 2511 729
I

la" + h")h"

26811 =
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In this example, the cjuotient of the division of 2G8002, by the ap-

proximate divisor, 24300, is ] ; but this is manifestly absurd. By
trial, 9 is found to be the second figure of the root, because the true

divisor, 26811, enters 9 times, neither more nor less, in 268002.

We have for the extraction of the cube root of any number above

1000, the foUovring

RULE.

I. Begin on the right and divide off periods of three jigures each.

There will remain on the left a period of one, tico, or three figures.

II. Extract the greatest cube contained in the left hand period, and

set the root on the right, after the manner of a quotient in division.

Subtract the cube of the root from the left hand period, and brivg

doivn the next period.

III. Talce three times the sqnai-e of the root found, regarded as tens,

and set it on the left as an approximate divisor; see how often this

enters into the first remainder. The quotient icill be the second figure

of the root, or something greater. Add to the ajyproximate divisor the

product of three times the first figure of the root, regarded as tens, plu:^

the second figure of the root by the secondfigure of the root. The sum

of this product and the approximate divisor %oiU be the true divisor

if it enter into the remainder the same number of times as the ajiproxi-

mate divisor. Multiply the true divisor by the second figure of the

root, sidttract the product from the first remainder, and bring doicn the

next period.

IV. Add to the first trtie divisor the same number that was before

added to the approximate divisor, plus the square of the second figure

of the root, and annex two cyphers to the sum, the residt will be the

second approximate divisor. The true divisor is found as before.

Continue this process until all the p)eriods are brought doicn ; then, if

the last true divisor, midtiplicd by the fined units of the root, gives a

product exactly equal to the last remainder, the given number is a per-

fect ctdie, and its exact root has been found.

1. Required the cube root of 9261. Ayis. 21.

2. Required the cube root of 85184. Ans. 44.

3. Required the cube root of 8024024008. Ans. 2002.

4. Required the cube root of 1371330631. Ans. 1111.
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5. Required the cube root of 10306070(50301. A71S. 10101.

6. Required the cube root of 1307631. Ans. 111.

7. Required the cube root of 1879080904. Ans. 1284.

8. Required the cube root of 95306219005752. Ans. 45678.

9. Required the cube root of 95306219005752000.
Ans. 456780.

10. Required the cube root of 468373331006. Ans. 7766.

APPROXIMATE ROOTS OF INCOMMENSURABLE NUMBERS.

264. Let a represent any incommensurable number—we have seen that

its root cannot be expressed by an exact fraction ; it may, however, be

truly determined to within less than any fraction, — , whose numerator

mv"
, ^ r^ , / (r + ly

IS unity. I-tor a = -y, and « ]> — , and <^ 3 ;
r denoting the

entire part of the root of an^. Then, since a is comprised between

y^3 (r 4-iy , , r r 4-1
-^, and ^^ ^—^, its root will be greater than — , and less than .

n n
" M n

r . . 1
Hence, — differs from the true root by a quantity less than — . Now,

as — may be made indefinitely small, the approximate root may be

found as near to the true root as we please ; the difficulty of extracting

the root increasing, however, with the increase of n.

Hence, we deduce the following

RULE.

Midiiphj and divide the nnmher hy the cube 0/ the denominator of

the fraction that marks the degree of aj^proximation ; extract the root

of the new numerator to within the nearest unit, and divide the result

hij the root of the new denominator, lohich will he the denominator of

the fraction that determines the degree of approximation.

1. Required the cube root of 4 to within i. Ans. |.

Because ^T== -y^^' = \/~ < f,
and > |. The true
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the value of the fraction will bo altered. The root of the new nume-

rator, to within the nearest unit written over the exact root of the new

denominator, will be the approximate root required. If a nearer degree

of approximation be required, both terms of the fraction may be multi-

plied by the 5th, 8th, &c. power of the denominator. The reason for

making the denominator rational rather than the numerator, is the

same as that given in the explanation of the principles involved in ex-

tracting the square root of fractions.

The rule for the extraction of the cube root of fractions belonging to

either of the three foregoing classes, is as follows :

RULE.

Make the denominator rational, if not already so, hi/ multiplying

hoth terms of the fraction hy the square power of the denominator.

Extract the root of the new numerator to within the nearest unit, and

lorite the root found over the root of the new denominator, which will

he the same as the denominator of the given fraction. If a nearer de-

gree of approximation he required, hoth terms of the fraction may he

multiplied hy the bth, Sth, &c. powers of the denom{?iator. The root

(f the neic fraction loill he the root required.

EXAMPLES.

1. Required the cube root of tf^. Ans. |.

For (I)' = I X f X f = 3^.

2. Required the cube root of ^f to within \. Ans. |.

Because (-|)^ = |4, and
(f)''

= ^-^if . Hence, the true root lies be-

tween I and I ; and |, therefore, difi'ers from the true root by a quan-

tity less than -i-

3. Required the cube root of | to within i. Ans. |.

— 3 /2~~5^
Because y i = \ / -—— = -y^Q ^ 4, and < 4. The true rootV 5 .

5^ o3 ^ o' -- o

is nearer 4 than |, and, tliercrnre, | is taken.

4. Required the cube root of | to within I. Ans. |.

Because in == \/^ = VW> h a»<i < f

•
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5. Required the cube root of | to within y^^. Ans. i4|.

6. Required the cube root of ^-^ to within i. Ans. ^^.

266. The cube root of a fraction may also be determined to within

unity, divided by any power of the denominator ; we have only to mul-

tiply both terms of the given fraction by such a number as will make the

denominator a perfect third power of the denominator of the fraction

that marks the degree of approximation, and then extract the root of

the new fraction. Let it be required to extract the cube root of '^^ to

within \, then the given fraction must have its numerator and denomi-

nator multiplied by 32, in order to make the denominator 64, the cube

of 4, the denominator of the fraction that marks the degree of ap-

proximation.

Then, V^ = *yi^-|^ = irnj <- j^ aud y «.

8. Required the cube root of
^.f

to within ^. Ans. ^.

For rV = \7%^ = ^IW > e- ^"^ <

APPROXIMATE ROOT TO WITIIIX A CERTAIN DECIMAL.

267. There are two cases : the given number whose root is to be

found may be entire, or it may be mixed
;

partly entire and partly

decimal.

CASE I.

Approximate root oftoJiole numbers to ivitJiin a certain decimal.

If the decimal fraction that marks the degree of approximation be

changed into an equivalent vulgar fraction, the cube of its denominator

will be unity, followed by three, six, nine, twelve, or some multiple of

three cyphers. In other words, the cube of the denominator will con-

tain unity, followed by as many periods of three cyphers each, counting

from the right, as there are decimal places in the fraction of approxi-

mation. Thus (-1/ = {-.^J = ^J,^
. (-Ol)' = (^1^^ = y.^^^^.

Then, to multiply the given number by the cube of the denominator of

the decimal changed into a vulgar fraction is nothing more than an-

nexing three, six, nine, or some multiple of three cyphers. After a

now number has thus been formed, the extraction /of the root is, of
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course, performed just as when the fraction of approximation was a

vulgar fraction. Let it bo required to extract the cube root of 5 to

within -01.

^ 3/5.(100)3 V^OOOOOO. ,^^ J/,,,Then, V. = N/-^/ = \/imr > ^^«' '""^ < T^^-

RULE.

Annex to the given numher three times as many cyphers as there are

decimal places required in the roof. Extract the root of the neio num-

her thus formed to within the nearest unit, and point offfrom the right

the required numher of decimal places ; tchich amounts to the same

thing as dividing the root of the new numher hy the denominator of the

fraction of approximation changed into an eQuivalent vulgar fraction.

EXAMPLES.

1. Eequired the cube root of 60 to within -1 Ans. 3-9.

2. Required the cube root of 1775 to within -1. Ans. 12-1.

3. Required the cube root of 9 to within -01. Ans. 2-08.

4. Required the cube root of 9 to within -0001.

Ans. 2-0801 nearly.

5. Required the cube root of 18G4967 to within -1.

Ans. 123-1.

CASE II.

268. Approximate roots of mixed numhers to within a certain

decimal.

Let it be required to extract the cube root of 2o to within -1.

Then, y 2^ 3/23 . 10^ 3/2300 ^ , „ ^ ^ ,

Wc see that when the decimal has been changed into a vulgar frac-

tion, and the denominator made rational, the numerator, 2300, is the

given number, with the point omitted, and with cyphers enough an-

nexed to make the number of places, counting from where the point

was, a multiple of three. If it had been required to extract the cube root

of 2-3 to within -01,. it would have been necessary to add five cyphers
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to 3 ; the number of decimal places then would have been made a mul-

tiple of 8. Now, in pointing off for decimals, it is plain that we point

off as many places for decimals as there are places required in the root.

For, if one decimal place be required in the root, the denominator of

the root of the equivalent Aiilgar fraction will be 10; if two places be

required, it will be 100, &c.

RULE.

Annex cyphers to the decimal part of the mixed number until there

are three places, if one place he required in the root ; six places if two

he required in the root, &c. Extract the root of the new number thics

formed as a whole number, and point off from the right the required

number of decimals.

EXAMPLES.

1. Re(|uired the cube root of 2-12 to within -01. Ans. 1-28.

3/212 3/212x100^ 3/2120000^,,
For, VTT2 =^— = V -Too^ = N/ "100^ > • "<

or 1-28.

2. Required the cube root of 4-1 to within -1. Ans. 1-6.

3/41 X 10^ 3/4100 ^ , , , / ,

,

For, yCT= V^y = ^___ = y^__ > m, and < jg.

3. Required the cube root of 888 to within -01. Ans. 2-07.

4. Required the cube root of 68-64 to within -1. Ans. 4-1.

5. Required the cube root of 1770-25 to within 1. Ans. 12-1.

6. Required the cube root of 1150-455 to within -1.

Ans. 10-4 nearly.

7. Required the cube root of 5011-125 to within -1. Ans. 17-1.

In the 4th and 5th examples, one cypher only had to be annexed.

In the last two examples, no annexation was required. But if the

root in the last two examples is to be determined within -01, then

three additional cyphers must be annexed ; if within -001, six addi-

tional cyphers, &c.

The reason for annexing cyphers until the decimal places can be

separated into periods of three figures, is evident, even without ehang-
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ing the decimal into an equivalent vulgar fraction. For each period

of three figures must give one figure in the root , if, then, the decimal

places were not made multiples of three, when we come to point ofi"

from the right the decimals would be mixed with the whole number.

Suppose we were required to find the root of 8-72 to within -1. Now,

8-72 is but little greater than 8, whose root is 2. Hence, the root of

8-72 ought to be but little greater than two; but if we annexed no

cypher to 72, we would have but one period, 872, and the root would

be 9 approximatively.

APPROXIMATE ROOT OF DECIMAL FRACTIONS TO WITHIN
A CERTAIN DECIMAL.

269. A decimal fraction changed into an equivalent vulgar fraction

will have a rational denominator when its number of decimal places are

multiples of three.

Thus, -021 = ^§1^, -007681 = toVoUo. -123456789 = j^^WVo-
Hence, if cyphers be annexed to the decimal until the number of

places are made multiples of three, the new fraction, when changed

into an equivalent vulgar fraction, will have a rational denominator.

And, since every period of three figures gives one figure in the root,

cyphers must be annexed until the number of periods of three figures

is exactly equal to the number of places required in the root.

RULE.

Annex cyphers to the given decimal until it can he divided off into

as many periods of three jigures each as there are places required in

the root. Extract the root of the oicw decimal thus formed to vnthin

the nearest unit, and point off from the right the required number of

decimal places.

EXAMPLES.

1. Required the cube root of -8 to within -1. Ans. -9.

3/800
For, ^.S=^-,% = s^ j^3- > /„ and < fo.

2. Required the cube root of -08 to within -1. Ans. -4.

For, ^i)>i = ^j^^=V^n^>j'„ and<Y\5.
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3. Required the cube root of -008 to within -1.

Ans. -2, commensurable.

For, </"^0U8 = ^7^= rt = -^

4. Required the cube root of -8 to within -01. Ans. "92.

5. Required the cube root of -8 to within -001. Ans. -928.

G. Required the cube root of -68 to within -1. Atis. -8.

7. Required the cube root of -68 to within -01. Ans. -87.

8. Required the cube root of -068 to within -1. Ans. 4.

9. Required the cube root of -0999 to within -01. Ans. -46.

10. Required the cube root of -999 to within -01. Ans. -99.

11. Required the cube root of 0125 to within -01. Ans. -23.

12. Required the cube root of -125. Ans. -5, commensurable.

In some of the examples, it was necessary to annex one cypher, in

others, two cyphers; in others, again, three cyphers. It will be seen

that the root is greater than the number ; this ought to be so, since the

denominator of the decimal changed into a vulgar fraction is greater

than the numerator.

APPROXIMATE ROOT OF VULGAR FRACTIOXS TO WITIIIX A
CERTAIN DECIMAL.

270. Any vulgar fraction may be changed into an equivalent deci-

mal fraction by annexing cyphers to the numerator, and dividing the

new numerator thus formed by the denominator. The equivalent deci-

mal will be mixed, or purely decimal, according as the given fraction

is improper or proper. The division of the new numerator by the

given denominator must be continued until the decimal part of the

quotient contains as many periods of three figures as there are places

required in the root.

Change the vulgar fraction into an equivalent decimal fraction, and
make the decimal part of the quotient contain as many periods of three-

figures as there are 2:)laces required in the root. Then extract the root

according to the j^receding rides.
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EXAMPLES.

1. Ecqiiired the cube root of | to witlain -1. Ans. -6.

2. Kequired the cube root of | to within -1. Ans. 1-1.

3. Required the cube root of | to within -01. Ans. 1-17 nearly.

4. Required the cube root of ^ to within -01. Ans. -82.

5. Required the cube root of ^^ to within -001. Ans. -436.

General Rcmca-Jcs on the Extraction of the Giihe Root.

271. In extracting the cube root, we formed the three parts of

which each successive remainder was composed, regard being had to

the denomination of the tens and units in those remainders. But,

since any number, when cubed, gives as many periods of three figures

each, counting from the right, as there are phices of figures in the

given number (the period on the left, however, not necessarily contain-

ing more than one or two figures), it is plain that the first two periods

on the left of the given number give the first two figures on the left of

the root. The first three periods on the left give, in like manner, the

first three figures on the left of the root, and so on. It is evident, then,

that it is not necessary to form the three parts of which the successive

remainders are composed; we have only, when the first figure of the root

has been found, to cube it, and subtract the cube from the left hand

period. "When the second figure of the root has been found by using

the approximate divisor, 3a'^, we have only to cube the two figures

found, and subtract the cube from the two left hand periods, and bring

down the next period, and so on. If the cube of the first two figures

of the root exceed the first two periods on the left, the second figure of

the root must be diminished until the cube of the two figures is equal

to, or less than the two periods on the left. The successive figures of

the root can only then be ascertained by trial. We can always tell, by

cubing the two, three, or four figures of the root found, when the last

figure is too great ; but some test is necessary to point out when we

have diminished the last figvire too much. That test depends upon the

principle, that the difi"ercnce between two consecutive numbers is equal

to three times the square of the smaller number, plus three times the

smaller number, plus unity.

Let a be the smaller number, then the consecutive number next
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above it will be a+1. And (a +lf— {af = a^SaHSa + l — a»

= 3a^ + 3a + 1, as enunciated. If, tben, after subtracting the cube

of tlie figures found from the periods on the left, the remainder is ex-

actly equal to three times the square of the root found, plus three times

this root, plus unity, the last figure of the root can be increased exactly

by unity. If the remainder is greater than this quantity, the last

figure can be increased by unity, or something more than unity.

The following examples will illustrate the foregoing process. Re-

quired the cube root of 531441.

531441
I

« + i

Sa' = 19200 512 | S'l

19 441

531 441 = (a + If.

After finding the tens of the root, the approximate divisor entered

once in the remainder, the quotient was set on the right of the root

found, and the two figures of the root (81), when cubed, gave the

original number. Hence, the number was a perfect cube, and 81 its

exact root.

Take, as a second example, 081472.

G81472 \ a + b

Sa' = 19200 512
| 8 8

169 472

681 472 = (a + by

The approximate divisor gives 9 for the second figure of the root

;

but 89, when cubed, exceeds the given number, 681472. The last

figure, must, therefore, be diminished, if we make this figure, 7, and

cube 87, the cube when subtracted from 681472, leaves a remainder

exactly equal to three times the square of 87, plus three times 87, plus

unity. The last figure, then, can be increased exactly by unity, and

88 is the true root.

272. The formula for the difl'erence between consecutive cubes,

enables us to pass from the cube of one number to the cube of the

number next above it without actually cubing the higher number.

Thus, since, the cube of 10 is 1000, the cube of 11 must be 1000 +
3 (10/ + 3 (10) +1 = 1000 -f 300 +30 -fl = 1331. In like man-

ner, since (64)^ = 262144; then (65)=" = 262144 + 3 (64)^ + 3 (64)

+ 1 = 262144 + 12288 + 192 + 1 = 274625. When the numbers

18
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nuder consideration are very large, the formula will save a great deal

t)f trouble in deducing the cube of the higher number.

The second process that we have given for extracting the cube root

is usually followed, and when the given number contains but two

periods, is shorter than the first process ; but in every other case is

lonii-er.

EXTRACTION OF THE SQUARE ROOT OF ALGEBRAIC
QUANTITIES.

273. We will first show how to extract the root of monomials.

Since all rules for the extraction of roots must be founded iipon the

rules for the formation of powers, we must first examine, in the present

ease, how the power of a monomial is formed. Let P represent the

numerical coefficient of any monomial, and a" the literal part of the

monomial. Then, the monomial will be Pa" j now, to square Pa"', is

to multiply it once by itself. And Pa" X Pa™ = P^a^". Hence, to

square a -monomial, we have only to square the coefficient, and to

double the exponent of each literal factor. The square of 2o-c is, by

the rvile, 4a*c^. The square of ba~^chl~^ is, by the rule, 2ba~'^c'*d~*.

The square root of 4aV is then, of course, 2a^c; but— 2a^c will, when

multiplied by itself, give 4aV. Hence, the root of 4a''c^ may be either

+ 2a^c, or — 2a^c. So, in like manner, the root of 25a~V<:?"'' may

be either + 5a~'c^(?~^, or — ba~^c^d~'^.

RULE.

I. Extract the square of tlie coefficient, and divide tJie exponent of

each literal factor hy 2.

II. Write, after the root of the coefficient, each literal factor, tvith

its neio exponent.

III. Affect the tchole result with the douUe sign, ±.

EXAMPLES.

1. Extract the square root of 16a^c-^<f-". Ans. =b Aa%-H-'

2. Extract the square root of 16a^"'i''"c^p. Ans. ± 4a"Z*''°cF

3. Extract the square root of \AAan>'\'\ Ans. it 12a''&V

4. Extract the square root of 3Ga'^?>'V°(^^l ^^^ _t- Qa^i\^°d''
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5. Extract the square root of a'^h'^c-'^^. Ans. ± a^^h'rc-^^.

6. Extract the square root of 256

7. Extract the square root of
a^b'c^' Ans. ± a-'h-^c-^.

25
8. Extract the square root of . , > , _, ^ i

-. _i

9. Extract the square root of ——-. .
, = i^ 2o Ans. it o~^xyz.

10. Extract the square root of P-^M''-N-"=. Ans. ± ^»3I-^N-^

11. Extract the square root of , ,., , .
, _, ^^ _„7_i„ _i^ «>i*''r Ans. ± 20a "/^^"c-'.

12. Extract the sciuare root of —j7r?r~ « j /.-,^\^-^ mUn^ 400 .'Ins. it (20) 'a'"i'/v.

13. Extract the square root of o-V>-^*c-'^^ Ans. zt n-7>-'v--^'-.

It is plain that a monomial will not be a perfect power when its co-

efficient is not a perfect square, and when every exponent is not some

multiple of 2. But wlien the exponents of the literal factors are not

exactly divisible by the index of the root, the division can be indicated.

Tlius, v/4x = =t 2.r-, for, by the rules for multiplication, (db 2.r-)

(=h 2x~) = ix. Hence, =t 2a:- is, truly, the square root of -ix. So,

also, VTiV = it oH^c^, because (it ah^c^) (=t ahh^) = al^c'.

The square roots, then, of all algebraic quantities may be truly ex-

pressed whenever their coefficients are perfect squares.

SQUARE ROOT OF POLYNOMIALS.

274. A trinomial is the least polynomial th^t is a perfect square.

It would be a mistake to suppose that the square root of a^ + Ir is

a + h, for (a -f hf = a^ + 2ah + l\ The term, lab, enters into

the square of (a -f h), and is not found in a' -\- 1/. Any polynomial,

to be a perfect square, must be susceptible of resolution into two equal

factors ; and we know that when these factors are multiplied together to

reproduce the polynomial, the two extreme terms of the product (if the
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factors have been arranged with reference to a certain letter) are irredu-

cible with the other terms. Hence, the square root of these extreme

terms must be terms of the whole root. The extreme terms of s/a^-]-l/

must then be a and h, but the intermediate terras can only be found

approximatively.

Any binomial, as (a'+ s), when squared, will give a trinomial, a'^+
2a's + s^. Conversely, if we have any trinomial that is a perfect

square, its root must be a binomial.

Let it be required to extract the square root of ISah + 81o^ + 7/.

If this trinomial be arranged with reference to the highest power of

one of its letters, as a, and the square root of the first term be taken,

we know that we have certainly one term of the root required, Be-

cause, from what has been said, we know that the first term of the

arranged trinomial is the product of the first terms of the two equal

factors into which the trinomial can be resolved. In other words, it is

the square of the first term of the required root. The arranged poly-

nomial is Sla'^ + ISab

81a- '+ ISah -f h'
I

9a + b + h'. We begin by

Sla^ = a'^ \lSa + b = 2a's + s extracting the root of

2a's -f s^ = ISab + 6^ the first term, and set

18«6 + b^ this root in the same

horizontal line with the

polynomial, and on its right separated by a vertical bar. We subtract

from the given quantity the square of the first term of the root ; there

remain, then, only the two terms, 18a?> + b^. Now, we know that

the first term of this remainder, ISab, is the double product of the first

term of the root by the unknown second term. If, then, we divide

18aZ» by 2 (9a), or 18a, the quotient, b, must be the second term of

the root. The root is then completely known. The result can be

verified by squaring the root 9a -\- b ; or, since the remainder ISob

+ b^ con-esponds to 2a's + s'^, and since 18a corresponds to 2a', if we

write 18a below the root, and b, which corresponds to s, on its right,

and then multiply 18a + & by Z>, we must evidently form the remain-

der, 2a's -f si

275. Since, when a trinomial is a perfect square, its extreme terms

must be perfect squares, and its mean term must be the double product

of the roots of these terms, we can tell in a moment when a trinomial

is a perfect square ; the mean term of the aiTanged trinomial must always

be the double product of the roots of the extreme terms. Let us apply
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tMs simple test to some expressions. 4a^ + 4ma + rr^ is a perfect

square, and its root 2a + m ; a + 2 V a6 + 6 is a perfect square, since

the test is satisfied, and the root, -^ a + s/h -, .r^ -\-2.x-y~ -\-i/ is a per-

3 3

feet square, and its root, x~ + y~.

The root, however, will only be commensurable when the extreme

terms of the arranged trinomial are rational. We have, from the fore-

going, a simple rule for the extraction of the root of a trinomial that is

a perfect square.

Extract the root of the extreme terms, and connect their roots together

1)1/ the sign of the mean term.

Thus, the square root of m^— 2mn + n^ is m— n; this is obvious,

since {in— iif = m^— 2mn + n^ ; or it may be seen by going through

the steps of the process described.

EXAMPLES.

1. Kequircd v/49a^ + Warn -f- m^. Ans. la + m,

2. Required v/49a''^— lAam -\- m^. Ans. la — vi.

3. Required v/49a^ + 28am + 4ml Ans. In + 2m.

4. Required y/^Qa^— 28am + 4m''. Ans. la— 2m.

5. Required V4m + IQ^Wn + 16». Ans. 2 n/w + 4 v/TT.

6. Required 74m— IQs/mTi + 16rt7 Ans. 2-/m — 4%/?^

7. Required -/m^— 14am + 49al A?is. m— 7a.

8. Required V4hi2 — 28am -f 49a''. Ans. 2m — 7a.

Bema7-7:s.

Examples 2 and 4, in connection with 7 and 8, show, that when the

mean term of the trinomial is negative there will be two distinct roots,

according to the arrangement of the terms. The reason of this is

plain. It is evident, moreover, that when either of the extreme terms

has the negative sign, or when both are negative, the root will be

imaginary.

18* o
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The rule for the extraction of the square root of a trinomial has an

important application in the solution of complete equations of the second

degree, and ought, therefore, to be remembered.

270. If the given numher, instead ofheing a trinomial, have a tri-

nomial root.

Let a + m -\- n represent this root. Then, by representing a + m
by p, and the given polynomial by N, we have N = (^ + n)^ =
jp2 _|_ 2pn + n^ = a^ + 2am + m^ + 2 (a + m) « + n^. We see

that the first three terms is a perfect square, and the root may be

found by the rule for the extraction of the root of a trinomial ; then,

when we have taken the square of the root, a^ + 2am + ??i^, from the

given polynomial, there will remain 2 (a. + m') n -f n"^. The first term

of this remainder, 2an, divided by 2a, the double of the first term of

the root will give n, the third term of the root. The remainder,

2 (a + m)rt -f n^, may be put under the form (2a + 2m -f 71)%. If,

then, the first two terms of the root found be doubled, and the third

term added to them, and their sum be multiplied by the third term,

the product thus formed will be equal to the remainder. The process

for extracting the root of a polynomial which is the square of a trino-

mial, is precisely like that for extracting the root of a polynomial which

is the square of a binomial. The divisor, to get any term of the root

after the first, is twice the first term of the root ; the terms of the root

preceding the last term found are doubled, the last term added, and

the product of the whole, by the last term, subtracted from the succes-

sive remainders.

The diifcrcnt steps can be best exhibited by the following example :

a" = 4:n'

2m-f3m+5
4n + 3m

2am+7n^-{-2 (^a+m)n-\-nr=127nn+ dm^-\-i:nb-\-Qmb-\-h^ 4?i-}-6m-f?»

2am+m''=12«m-f9m^

2 (a+ m)n-irn''=4:7ib+Qmb-\-b'^

(2a+ 2m+n)n=4:nb-^Qmb-\-b^

We began by extracting the root of the first term, the root found

was set on the right, and its square subtracted from the given polyno-

mial. We had, then, taken out a^ of the formula from the given ex-

pressions 5 we next doubled the root found, and used this double root

(2rt of the formula) as a divisor to find the second term. This, when

found (to of the formula), was set on the right of 2??, and connected by
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its appropriate sign. The double of the first term, and the second

term, written directly under the root, were next multiplied by the

second term. We thus formed "lam -\- m^ of the formula, which, when

subtracted from the first remainder, left -inh + 6mh + l^, correspond-

ing to 2 (a + m) 71 + ?i^ of the formula. The first term of this remain-

der (2an of the formula), divided by twice the first term (2rt of the

formula), obviously, gave the third term (?() of the formula. The first

two terms of the root were next doubled, and the third term added to

their sum. Having thus formed 2a + 2m + m of the formula, wc

multiplied this sum, 4?i + Qm,-\-h, by the third term, h, (or n of the

formula). We thus plainly formed the three parts of which the re-

mainder was composed; and the product being exactly equal to the

last remainder, the polynomial had an exact root, 2« + 3m -|- h.

The foregoing reasoning can be readily extended to a polynomial

whose root contains four terms. For, let N represent the polynomial, I,

the sum of the first three terms of the root, and n the last term of root.

Then, '^ = {I -\- nf = F + 2ln -f n^. Suppose the first three terms

to be a, h and c; then, N = (a -f i + c)^ -f 2 (a + h + c)n + ii".

Now, the first three terms is the square of a trinomial, and the root can,

therefore, be extracted precisely as in the foregoing example. After

the square of the root has been subtracted from the given polynomial

there will remain 2 (a + b + c) n+ii^. The divisor to find n is, ob-

viously, still 2a, twice the first term of the root. And, since th(

remainder can be placed under the form of | 2 (a -f- S 4- c) -f- » |
n, it

is plain that, if the last term be added to twice the sum of the first three

terms, and the whole sum be multiplied by the last term, we will form

the three parts of the remainder. The process for extracting the root

of a polynomial which is the square of four terras, is then identical with

that for exti-acting the root of a polynomial which is the square of three

terms, and that, we have seen, is the same as the process for extracting

the root of a polynomial that is the square of a binomial. Now, if the

root is composed of five terms, after the square of the first four terms

has been subtracted from the given polynomial, the remainder will be

found to be the double product of the four terms found by the untnown
fifth term, and the divisor to find this term will still be twice the

first term of the root. And so the reasoning may be extended to a

polynomial whose root is made up of six, seven, or any number of

terms. Hence, for extracting the root of any polynomial, we have the

followins:
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RULE.

Arrange the polynomial 7vit7i reference to one of its letters. Extract

tlie root of the first term, and set the root in the same horizontal line

icith the given polynomial, and on its right, separated from it hy a

vertical bar. Suhtract the square of the root found from the given

polynomial, and hring down the remaining terms for the first remain-

der. Write double the first term of the root found immediately be-

neath the place of the root, divide the first term of the first remainder by

it, and write the quotient, lohich is the second term of the root, on the right

of the first term of the root, and also beneath and on the right of double

this term. Multiply the double of the first term, and the second term,

itself affected with its propter sign, by the second term, and subtract

the binomial product from this first remainder, and bring dotcn the re-

maining terms for the second remainder. Divide the first term of the

second remainder by the double of the first term of the root, and the

quotient, affected with its proper sign, will be the third term of the root.

Set this third term in the root, and also in another horizontal line on

the right of double the sum of the first two terms of the root. Midtiply

the three terms in this horizontal line by the third term, and subtract

their product from the second remainder. Continue this process until

the final remainder is zero, the root will then be exact; or continue

until the letter, according to which the polynomial has been arranged,

has disappearedfrom one of the remainders. Tlien, if all the expo-

nents of that letter in the given polynomial are positive, we conchide

that the polynomial is not a perfect square.

Required the square root of 4x'^ + Vlxy + 4a;2 + 16x? -f %^ + 6^2

+ 24^? + %lz + 16ZI

The polynomial is already arranged.

4z2 4- 12xy+4zz4-162:Z+97/2+6y2;+24?/Z4-8Zz+16Z2+22

4x2

1st Rem. =12zy+42z+16a;Z+V4-Gy3+24yZ+8/z+lGZ2-|-22

]2zy +V

4X+32/

42:-f-6y+2

4a;+6y+22+4i
2cl Rem. =:4xz-\-16zl -^Gi/z-\-24yl-^8lz-\-l&-^-\-z^

izz +C.yz 2^

3d Rem. =16xZ -^24yl-\-8lz-}-16l^

16x1 -\-24yl-{-Slz-\-lGP
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277. After the beginner has become familiar with the preceding

principles, it will not always be necessary to go through the process

of forming the successive remainders. The successive products, distin-

guished by parentheses, may be all formed, and their sum taken at

once from the given polynomial, as in the following example.

TO* — 6mn + Ore* + imp — 2mq — \2np + 6/17 -f 4p*— 4p2 -f 5*

(m'-i) + 2(—6j?m + 9n») + '(4mp — V2np -j- ip"^) -f *(— •Zmg + (mq — ipq + g')

7)1—3?i+2p—

7

•2nj—67i+2;>

We have distinguished the successive products by parentheses,

affected by exponents written on the left.

278. It is obvious that the successive steps required by the general

rule for extracting the square root of any polynomial, amount to nothing

more than subtracting the square of the algebraic sum of the terms of

the root, as they are found, from the given polynomial. In some cases,

then, it may save trouble to subtract the square of the algebraic sum

of the first two terms of the root from the given polynomial, then bring

down the remaining terms and find the third term. Next, subtract

the square of the algebraic sum of the first three terms of the root from

the given polynomial, and continue in this way until all the terras of

the root are found.

1. Kequircd v/x- + 4^^— Oxz + 4ay— 12?^ + 92^

Ans. x-V^— ^z.

2. Required V x" -^-i/— 'ixY + 4z'' + \z^x'— \zhj\

Ans. -x^— 7f -f 2z^

3. Required \ / mi^ -f ]/r— mn + -^ — \xn + '\xm.

Ans. in— ^iU -\- Jx.

4. Required \/a^— 2«./' + x^ + 2am— 'Ian — 'Ixm + 2xn. -f m^

2m?i + n^ Ans. a — x -\- m— n.

5. Required ^ *® + y** + txhn + 2xy— 'Ix^n + 'li/hn— 'Zijhi +
m^— 2mn + n"^. Ans. x^ -\- y^ -\- m— n.
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6. Required W a'-+ x^+ 2ax-{-am+ a7i+ xn +xm+ i7+x + ~9

. m n
Ans. a + x + — + —

\ Required y/sLc^^ + 9a-?/+-^ + 9x2 + 9xm + ^ + '!^' + i! +
4

'"'
_L

'"
^ n , y ,

2:
,
m

2"+ 4"- ^ns. dx + ^+- + -.

8. Required W |- + ^ + ^ -f Qmi/ + 6mx + 5^^ + bzx +
36m^ + 202^ + QOmz. . ^ V n

A71S. _ + ^ -f 6w + 5z.

9. Required v/^^ + 4x1/ + 4x' + 1 + 4x + 2y.

Ans. y + 2x + 1.

10. Required n/^-''+ lOa-y + 4a;'2/ + 12x2/'' + ^V'-

Alls X" 4- 2x1/ -f 3y^

11. Required Vx* -\- 2x^// + 2x^y + 2xY' + x^yt + ^V-
Ans. X? -\- xy -{- x?y.

12. Required the square root of ^^ + lOj^y + 4ic^y + 12.r3/3+9y-|-

2X' + ^x^y + 10:rj/2 + 6/ + x'' + 2.CTy + ?/^

Ans. x'' + 2xj/ + 3^/2 + a- + y.

Remarlc.

The short process, indicated in Art. 277, cannot be followed in the

last example.

SQUARE ROOT OF A POLYNOMIAL INVOLVING NEGATIVE
EXPONENTS.

279. The principles for the extraction of the root of a polynomial

containing negative exponents are the same as for the extraction of the

square root of a polynomial, all of whose exponents are positive, observ-

ing, however, in the arrangement of the polynomial, that that negative

exponent is the least algebraically which is the greatest numerically.

When, too, the arranged letter has disappeared from any remainder, it
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may be supplied witli a zero exponent, provided, that the exponent of

the same letter is negative in some of the terms.

Take, as an example, x-"^ + 2,x-^i/ + x^if + 2.xif +2y + y^.

Arranging the polynomial with reference to the ascending powers of

X, and proceeding as before, we have

X-' + 2x-'y + 2xV + xy + 2xf + x^
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6. Required the square root of x^— 2x^^ -}- x*y^ + 2a;'2/~' — 2x' +
2 — 2x-hj + 2.r-='^-' + a"^ + 3/-I A7is. x"— x^i/ + x-^ +^-'.

7. Required the square root of x~^-{-2?/-\-x^i/'^-{-—'^—l-a;~^^~'4-l.

Ans. X-* H ^ h xy.

INCOMMENSURABLE POLYNOMIALS.

280. When the exponent of the letter, according to which the poly-

nomial is arranged, is positive in all the terms, we know that the poly-

nomial is incommensurable when this letter is not found in any of the

successive remainders, or is found affected with a lower exponent than

it appears with in the first term of the root. But, if the letter, accord-

ing to which the arrangement is made, appear in some of the terms

with a negative exponent, we can only tell that the given polynomial

is not commensurable by observing that the operation would never end.

EXAMPLES

1. Required the square root of a^ -f h

'
"^

2a Sa' ^ 16^
,

^' ^' I'

2. Required the square root of 1 — x^.

Ans.

3. Required the square root of a;^— 1

X X X
^ns. l-^_--__&c.

1 1 1

2x Qx'' Ib.c*

4. Required the square root of 2x^ -f- 2a; + 2.13 ^
Ans. xV2 -f ^r + = + &c., or V^(x + 1, + -- + &G.)

^/2 4x^2 ^ ~ Sx

5. Required the square root of 2x^— Gx + 4.

3 1 1
Ans. Xs/2 — __&c., or y/2 (a-— #— &c.")

v/2 4x^/2 ^ - 8x ^

6. Required the square root of to -{- n.

Ans. s/m -j =. = -\ ^^— &c.
2s/m StoVto lGmV»i

7. Required the square root of x~^ -f 2a;~^ -f- 4a~'

Ans. x-^ -{ 1 + 2x -{ &c.
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SQUARE ROOT OF POLYNOMIALS CONTAINING TERMS
AFFECTED WITH FRACTIONAL EXPONENTS.

281. Since, in multiplication, the exponents of like letters are added,

whether they be fractional, or entire, it is evident that the square of
m m m Zm 2m m

rt"" = a° X a" is a °
. Hence, the square root of a^ is a" . Quanti-

ties involving fractional exponents may then be operated upon in the

same manner as quantities containing only entire exponents. This will

be shown more fully under the head of fractional exponents. Assum-

ing a truth which scarcely needs a demonstration, we will give a few

examples of polynomials involving fractional exponents.

EXAMPLES.

1. Required ^/ x"> + ,/0— 2xy— 2fz' -f 2x'z^ -f

Ans. x"— if'-\- z".

T. • , \ / '' V X y z x^z y z
Required Vj + ^ + -f- + -^- + -2-+V-

J i ^
X- y z^

^"^- Y + T+ 2-

Required \/ - + -L + -^ ^ ^ + —h^ 2/^^

. X t/ z
^ns. _ -f- 4^ -f-

-.
S o 6

4. Required \/x'^ + y'^ + 2x'^y^'° + 2^'0«^ -f 2a; 5 a^ + a*.

A71S. x^ -{- 1/^^ -} d^.

CUBE ROOT OF POLYNOMIALS.

282. The cube of a monomial, as a, is a", for (ay = a x a X a =za^.

The cube of a binomial, a + h, is a" + Sa^J -f 3a&' -f b\

For, by actual multiplication, we have (a + ly = (a + li) (a + h)

(a + I) = a" + Sa'b + ^a¥ -f V^. Since, then, the cube of a mo-

nomial is a monomial, and the cube of a binomial a polynomial of four

19
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terms, it follows that a polynomial of four terms is the least polynomial

which can have an exact cube root.

Knowing the third power of a binomial, we have only to reverse the

process to obtain the cube root of the power. We see that the first

term of the power is the perfect cube of a, and we know, from the man-

ner in which a product is formed, that that term, a?, has been derived

without reduction from the multiplication of the three factors of which

the power is composed. If then we extract the cube root of o?, we

know certainly that the root, a, is a term of the required root. Then a

will be one of the extreme terms of the root; and, since the extreme

terms of the root when cubed give powers that are irreducible with the

other terms, it follows that the cube of a or a^ is to be taken from the

given polynomial. After this subtraction, the remainder is 3a^6 +
3a6^ + 1/, and it is plain that the second term of the root can be found

by dividing the first term of the arranged remainder by 3a^, or by three

times the square of the first term of the root. The remainder, 3a^6 +
3aZ>2 .^ ^3 ^^^ ^e p^^ ^^^jgj, tl^g fQ^,j^ Qf ^3^2 ^ 3^J + 12)&. If then

we add three times the square of the first term of the root, three times

the first power of this term by the second term of the root, and the

square power of the second term of the root, together, and multiply the

sum of the three terms by the last term of the root, we will obviously

form the three parts of which the remainder is composed. The pro-

cess, then, for extracting the cube root, is analogous to that for extract-

ing the square root of a polynomial.

a? + ^a'h + ^aW + V
\
a + h

3a' + 3a6 -f
6^

1st Eem. = 'da^h + 'iay + W

2d Rem. =0

The root is set in the same horizontal line with the given polyno-

mial, the cube of the first term is taken from the given polynomial, and

the first term of the arranged remainder is divided by three times the

square of the first term of the root, to obtain the second term of the

root. Finally, immediately beneath the root is written, three times

the square of the first term of the root, plus three times the product

of the first and second terms of the root, plus the square of the second

term of the root, and the product of the sum of these three terms by

the last term of the root is taken from the first remainder.
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If the root be composed of three terms, a, h and c, we may repre-

sent the algebraic sum of a and h by m. Then, let P be the poly-

nomial whose root is a + h \- c, ytq will have V ^ (a -\- h -{ cf =
(m + cj = m^ -f- ^m^c -\- Smc" + c" = (a + bf + 3(a + bf c + S

(a + b) e f c» = CT* -f 3a^i -f ^ab^ + i' + ^ah + Qabc + Z¥c + c^

The first four terms of this polynomial are the same as in the last ex-

ample, and therefore their root, a -f i, can be found as in that example.

After the cube of the sum of these terms has been taken from the given

polynomial, the remainder may be placed under the form of | 3 (a + by

-f 3 (a -f 6) c-f c^
I

c. Then, having found the third term by dividing

the first term, 3aV, of the arranged remainder, by 3a-, it is plain that tha

remainder itself can be formed as before, by multiplying the last term

found into three times the square of the sum of the other terms of the

root, plus three times the fii-st power of the sum of the other terms into

the last term, plus the square of the last term.

Now, whatever may be the number of terms in the root, we may re-

present the algebraic sum of all of them, except the last, by s. Sup-

pose n to be the last term. Then P = (s -f ?i)' = s' + Ss^n + Ssn^ + ?i'

:

in which s represents the algebraic sum of any number of terms. If

a is the first term of s, then the first term of the development of 3s^m,

will be Sa^n. Hence, the divisor to find n is still three times the

square of the first term. After s' has been subtracted from the poly-

nomial, the remainder can be put under the form of (3s^ -|- Ssn + n^)«.

Hence, whatever the number of terms in the root, the successive re-

mainders can be formed just as when there are but two or three terms

in the root.

The following examples will illustrate the process.

1st R.=3x»+3a;*+9x*y+x=+18x=^+27xV+9-c'i'+27ii/^-|- 27^'

3x5 ^sx* +x'>

(3x« + 3x3 _^ a.»)^

(3(x^+^)»+3(xHa;)3y+9y»)3y

Rem. = 9x*y + 18x=(/ -f 27xV -|- 9x^y+ 27x3/«H- 27j'

9x«y -I- ISx^y + 27xV + 9x»y + 27xy'' + 27y»

Rem. =00 00 00
x'+ Qx'+ 15x*+20x'+lox'+Qx+ 1

x'

1st E. —Qx^i- 15x'-f 20x'+ ldx% Gx +1
Gx'+12x'+ 8:c^

a;^-f2.c-f 1

(3x^-f-6.cH4.r^)2.T

(;6(x'+2xy+S(x'+2x)l+l)l=
(Sx'+ 12x='-fl2xH3x^-h 6x+ 1)1

2d Rem. = Sx*+ 12x^-f 15x-^+ 6x -j-

1

3.r^+12.T='+15x^-f6x+ l

3d Piem. = T» 0~0
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RULE.

Arrange the given polynomial with reference to the ascending or de-

scending powers of one of its letters. Extract the ciile root of the term

on the left, and set the root on the same horizontal line toith the given

polynomial on the right, and separated hy a vertical line. Subtract

the cuhe of this first term of the rootfrom the given polynomial, and

hring down the remaining terms for the first remainder. Write three

times the square of the first term of the root immediately beneath the

place of the root. This will be the divisor to find all the other

terms of the root. Divide the first term of the remainder by the divisor,

and set the quotient, with its appropriate sign, on the right of the first

term of the root, for the second term, of the root. Set, on the right of

the divisor, three times the product of the first and second terms of the

root, affected with its proper sign, plus the square of the second term of

the root. Next, midtiply the algebraic sum of the three terms, thus

formed, by the last term of the root, and subtract the product from the

first remainder. Bring down the remaining terms for the second re-

mainder, and divide the first term by the divisor. The quotient is the

third term of the root. TaJce three times the square of the sum of the

first two terms, and add to this three times the product of the algebraic

sum of the first two terms by the third term,phis the square of the third

term. Multiply the algebraic sum of the whole by the third term,, and.

subtract the product from the second remainder. Bring doivn the re-

maining terms from the third remainder. Find the fourth term of

the root as before, and continue the process iintil all the terms of the root

are found.

Remarks.

1st. When the exponent of the letter, according to which the ar-

rangement is made, is positive in all the terms of the given polynomial,

we know that the root is not exact, whenever the exponent of the as-

sumed letter is less in the first term of any of the successive arranged

remainders than it is in the divisor.

2d. It is evident that the steps of the process, according to the rule,

amount to nothing more than subtracting the cube of the algebraic sum

of the terms of the root, when found, from the given polynomial. It

may, therefore, sometimes save trouble to proceed thus. Subtract the cube

of the first term from the given polynomial. Find the second term of
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the root according to the rule. Cube the algebraic sum of the two

terms of the root, and subtract the result from the given polynomial.

Find the third term, and subtract the cube of the algebraic sum of the

first three terms of the root from the given polynomial. Proceed in

this manner until we get a zero remainder, or until it becomes evident

that the given polynomial is incommensurable.

EXAMPLES.

1. Eequired the cube root of x^ -f 3x« + 3x^ + 7x« + 12x* + Qx*

+ 12x='+12x2+ 8. Aus. x'^+x^^^.

2. Kequircd the cube root of x^ + 6x' + 21a;* + 44a;' + 63^-^

+ 54x + 27. Ans. x^ 4. '2x + 3.

3. Eequired the cube root of 8a;« + 48x' + lG8x^ + 352ar' + 504x2

+ 432:c + 216. Ans 2x' + 4a; + 6.

4. Required the cube root of tt + x + ~yr +"97"+ —/^ + -^ + 1-

, x^ x ^
Ans.- + j + \

r -n . ,,, , , ,.
125a;' 75.?;"' 15a;' a;''

5. llcquired the cube root of
.
- -\ -7- 4 1 .

^ 64 ^ 64 ^ 64 ^ 64

Sa;^' la;
An,. ^+Y-

p T> • J xu 1- i. ^ 125a;' 7bx'' 15.';* a;'
0. Required the cube root of 1 1 1 .

5a;' la;
Ans.-~ + -.

r, T, . , ,, , ^ x\ Sx' 3.r' 7a;« Sx' Sx*
7. Required the cube root of — +-— + —- + —- + __ -|

8 8 8 8 2 4

,

3a;' 3x^
, ^ . ^' ^ ,

8. Required the cube root of Scv^ + 12a'J— 12a^m + Qah'—
12amb + Qant"— 3mb^ + Sm'b + 6'— m' Ans. 2a + b^m.

9. Required the cube root of a;'

—

9x^^— Sx^ + 27a;/ + 18a;y

+ 3x— 27/— 272/^— 9y— 1. ^«s. a;— 3^— 1.

10. Required the cube root of x^ + 3x* + 3a;y— Sa;^ + Sa;" + a;'

+ 6.xy— 6a;'y + 6a;V + SxY— QxY— Zxhj + 3.r/— 6x/ +
3a;/ + /— 3/ + 3/—/. Ans. x^ + x + / —y.

19*
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CUBE ROOT OF INCOMMENSURABLE POLYNOMIALS.

283.— EXAMPLES.

1

.

Required the cube root of x^ + 3j;^ + 3.r + 3

Ans. rr + ]

2. Required the cube root of x^ + Qx^ + 12a; + 9.

2
Ans. rr + 1 + g-^+,&c.

Ans. a^ + 2 + ^^-^ + ,&c.
ox

3. Required the cube root of x^ + o^.

Avic nr _L .

3^2 9a-.^'

4. Required the cube root of x^ + c,x^ + 4.

a" a"

^ns. ic + 1
, &e.

X

5. Required the cube root of x + 3.c^ + 6.

6. Required the cube root of u^ + Zar^ + 3x-i + 2

y/x}

Ans. .r~' + 1 + -—;r-+ , &c.

7. Required the cube root of x~^ + &x~'^ + 12.x~' + 9

3^
Ans. X > + 2+o^+,&c.

8. Required the cube root of x~^ + 3a;~^ + 3.t~^ + 2.

Ans. x~'^ _j_ 1 --(--

9. Required the cube root of x'' + 9.r« + 27.r' + 26

^72S. .T^ -j. 3

10. Required the cube root of x^ + Scc^ + 3a;* _}- a;

Ans. x-2 j_ l.f-J_-f &e.

^72s. a-3+3 —— —,&c.

Ans. x^ -\- X— K J
&c.
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CUBE ROOT OF POLYNOMIALS INVOLVING FRACTIONAL
EXPONENTS.

284.— EXAMPLES.

3 1
1. Kequired the cube root of x~ + 3^:; + 3x- -f 1.

7 5

2. Required the cube root of x + Sz^ + 3x^ + x

3 9

3. Required the cube root of .t« + 3.c' + x- + 3x-

Ans. a;- + 1.

1

3

1 1

Ans. x^^ + x^.

I

ins. x^ + a:-.

5_1 L3 3

4. Required the cube root of .x'^ + 3x ^ + ox ^ + x'^.

Ans. x^ + x^.

5. Required the cube root of .r« + 3x^ + 3a;* + 3ar' + Gx^ + Sx^

+ x^ + Bx + 8x2 4. 1. ^„s. 0-2 + x2 + 1.

6. Required the cube root of 8x« + 2-kJ + 24x'' + 48x'^ -f 24x='

+ 8x2 4. 24x + 24x2 ^ 8. Aiis. 2x^ + 2x2 + 2.

1 4 ]j?

7. Required the cube root of x2 + 3x^ + 3x •* + x'

Ans. x^ + X.11 17
8. Required the cube root of x^ + Sx*^ + Sx^ -\- x^ .

1 J J
Ans. x^ + x'«.

1 fi i_4 4

9. Required the cube root of x^ + 3x ^ + 3x " + x^,

2 4

Ans. x3 -|- x^.

10. Required the cube root of x'^ + 3x^4^ + 3x'^^ + 1 + 3x^ + 3x2

+ 6x^4'^ + 3x* + 3x^ + xl Ans. x' + x4 + 1.

11. Required the cube root of x~'^ + 3x~ ^ + 3x~2 -j. 1 _j- S^c »
_f-

6x~'4 4- Sx~~ + 3x-' + x~4 + Sx~4. Ans. X-* + x~4 + 1.
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12. Required the cube root of x"'^ + 3x~ s + 3x~ § + x~^.

Ans. x~^ + *~^-

L3 8

13. Required the cube root of cc^— 3x ^ -f 3x3 — ^.

Ans. x^— x^

.

14. Required the cube root of x^ + 3*^ + Qx^ + ^x'^ + Qx^~ +^x^

+ lOx^ + 9«2 + 1x^^ + 6x + 3a;^ + 1. Ans. x^ -^ x -^ x^ + 1.

_3 _S
15. Required the cube root of 1 + 3x-' + 6j3~^ + 3a; ~ + 6 ~ +

9.7;~3 + lOx-^ + 9x-^ + 7a;~^ + 6x-^ + 3x~'^' + »-«.

Ans. 1 + X-' + x~3 + a;-l

IG. Required the cube root of 27xH81x5+162x''+ 81«~ + 162a;^ +

243a;^ + 270a;='+ 243a;H189x"^' + 162x + Slx^ + 27.

Ans. 3 (a;'^ + a; + a;^ + 1).

CUBE ROOT OF POLYNOMIALS CONTAINING ONE OR MORE
TERMS AFFECTED WITH NEGATIVE EXPONENTS.

285. The process is the same as for polynomials, all of whose terms

are affected with positive exponents; observing, in the arrangement,

that that negative exponent is the least algebraically which is the great-

est numerically, and that when the letter, according to which the

arrangement has been made, has disappeared from any of the succes-

sive remainders, it may be introduced affected with a zero exponent.

EXAMPLES.

1. Required the cube root of x~^ + 3 -[- 3x^ -f- x^.

Ans. x~^ -f cc*.

For, by the rule

x-^ + 3 + 3x« + x"^
I

x-"- -f a*

(3x-* + 3a;2 -f x^'^x"

1st Rem. = 3x° -f 3.^^ + x'^

2d Rem. =
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This polynomial miglit have been arranged with reference to the de-

scending powers of x.

2. Required the cube root of :r~^ + Sji-^ + 3 + a;'-

Alls. cc~^ + X.

3. Required the cube root of x-^ + 3:e-^ + 3x-^ + 3x-2 + 6x-' +
4 + 3^ + 3^2 + x^. Am. x-'' -\- x \- 1.

4. Required the cube root of x' + S.r^ + ox + 7 + 12x-' + 6x-^ +
12x-^ + 12x-^ + 8x-«. ^«s. a; + 1 + 2^-^

5. Required the cube root of I + Gx"' + 21.>:-^ + 44x-^+ 63x-^ +
54x-^ + 27x-«. Am. 1 + 2x-' + Sx"''.

6. Required the cube root of a"^— Ga-^i + 12a-^Z<'—Sa-«6'.

^Hs. a-'— 2a-^6.

7. Required the cube root of x^ + Gx^— 40 + GGx-^— G4x-^.

Ans. X -f 2 — 4x~'.

8. Required the cube root of 1 + Gx"' — 40x-^ + OGx-^— G4x-«.

Am. 1 + 2x-'— 4x-2.

9. Required the cube root of 1 — Gx"' + lox-^— 20x-' + 15x-' +
— 6x-5 + x-«. Am. 1 — 2x-' + x-^

QUANTITIES AFFECTED WITH FRACTIONAL EXPONENTS.

28G. Suppose it be required to multiply a" into itself until it is taken

three times as a factor. Then, by the rules for multiplication, «" X a"

X a = a'-. This result is, evidently, the cube of a". Now, o-jmul-
.1 J 3

tiplied by itself once, gives a' X a' = a~ = a ; and ^/ a, multiplied by

itself once, gives -J a X \/ a ^ yj a- = a. So, a', and \/a, arc cqui-

valent expressions. The expression, a"-, then, which indicates the cube

of a", also indicates the cube of sf a. The numerator of the fractional

exponent denotes the power to which the quantity has been raised, and

the denominator the degree of the root to be extracted. Taking a

three times as a factor, we have a X a X a = a^"*"^"*"^ := a. Now,

P
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the ^/ a, raised to the third power, will also plainly be a, because,

from the definition of Involution and Evolution, it is evident that

the latter undoes what the former has done. The root of any quantity

raised to a power indicated by the index of the root, must then be the

quantity itself. Hence, (^ a)* := a ; then, a= ^ a ; since we have

seen that both a , and V a, when cubed, give a. In general, an =
^a". Because aa, taken as a factor n times, gives d^Xa^Xa^ =

a" " n = a", and V«"j raised to the n^^ power, is also a™. The

fractional index may be regarded as denoting a poioer of a root. The

denominator expresses the root, and the numerator the power. The

denominator shows into how many equal factors, or roots, the given

quantity is divided, and the numerator shows how many of these fac-

tors have been taken. The fractional index may be considered to de-

note tJie root 0/ a power, as well as the power of a root. Thus, a^ may

either denote that the third power of the *J a has been formed, or that

the square root of the third power has to be taken. Taking the former

view, it indicates an executed operation ; taking the latter view, an

unexecuted operation.

In general, a" may be read the m^'^ power of the n^^ root of a, or the

«."' root of the m}^ power of a. It is more convenient to read the ex-

pression thus, a to the m divided by n, power ; or a, raised to a power

denoted by the quotient of m, divided by n. So, ai is read, a to the

P— power.
9

There are two consequences of notation by means of fractional expo-

nents that deserve consideration. 1st. Any multiple of the numerator

of a fractional exponent may be taken, provided an equal multiple of

the denominator is also taken. Thus, az=a^ is also n=a.^^=a^=a"', &c.

So, also, ai = a'l. The reason of this is plain; the increase of the

denominator makes the equal roots or factors of the given quantity, a,

smaller; but the numerator being increased just as much as is the

denominator, the number of these smaller equal roots will be increased

enough to make up for their diminution in magnitude. 2d. Since the

fractional exponent may be exchanged for any other of equal value, it

may be expressed in decimals. Thus, o^ = a"*^ ~ a-^. So, also, «•'»
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1

= a.037037+_

These decimal indices are called logarithms. The manner of calcu-

lating them, and their use, will be shown hereafter.

MULTIPLICATION OF QUANTITIES AFFECTED AYITII ENTIRE
OR FRACTIONAL EXPONENTS. — MONOMIALS.

287. Quantitities with fractional exponents must plainly be multi-

plied in the same way as quantities affected with entire exponents.

That is, the exponents of the same letter or letters in the multiplicand

and multiplier must be added, and after the common letter or letters

must be written tho.ee not common, with their primitive exponents.

Let it be required to multiply a^ by o^. Then, a- is to be repeated

a^, or a- times. Now, to repeat a-, a- times, we have only to add

the exponents of multiplicand and multiplier, for the first exponent

1 3

denotes that a^ has been taken three times to produce the product, a-\

and the second exponent denotes that a^ has been taien four times in

4 1

the product, a^. Hence, a^ must enter seven times in the result of

3 4 .7
the multiplication of a- by a-, and that result must be written a^. To-1.1 i 1

multiply a- by h, is to repeat a-, h times. Hence, a-xh = a^b.

RULE.

Multiply the coefficients together for the coefficient of the product.

Reduce the exponents of the same letters in multiplicand and multiplier

to the same denominator, add their numerators, and set their sum over

the common denominator. Annex these letters to the new coefficient,

and lorite after them all the letters ichich are not common to the multi-

plicand and midfiplier. '-.

EXAMPLES.

112 3 3 4

1. Multiply a^6°" by a°Z>^c. Ans. n^l>''c.

i J 1 7 13 9

„ ,, . . ,
a^McS ^ aWc+' , a^b 4 c^

2. Multiply -—^— by ^—

.

Ans. ^ .
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3. Multiply by . Ans.

4. Multiply
^ ^ J

by a~x^i/^z^.

x-i/z"

5. Multqily a "6 "c p by a"i"'cp

.
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will be negative. So, also, if there are any letters in the divisor not

coiumon to the dividend, they must appear in the quotient, with their

primitive exponents taken with a contrary sign ; else, when the quo-

tient and divisor are multiplied together, these letters would enter in

the product.

RULE.

Divide the coefficient of the dividend hy that of the divisor, the result

icill he the coefficient of the quotient. Write after it all letters common

to dividend and divisor, affected with exponents equal to the difference

of their exponents in the dividend and divisor ; and, also, cdl the

letters common to the dividend only, with their primitive exponents;

and all common to the divisor only, icith their primitive exponents

taken with a contrary sitjn.

3 1 .1 i } 3 _ 1

1. Divide 4a2c-(?'^ by 2a"c'cZ. Ans. 2a~cd ^^.

11} 1 °^'" '-2« t
2. Divide VZa^b' c d^ by Ga- b"". Ans. 2a »' b'^c d^.

3. Divide 7x"'?/"zp hj x'"y''z~p. Ans. Iz p .

_j _j J I 1 _i
4. Divide 72 "rj hjz'y x . Ans. Tar'^-'x .

5. Divide 24a'*i^c^ by 242='a~''i~^c"^. Ans. z'^ahc.

h + -} 18
6. Divide l^x"y"" z by —j—j

—

-.

a;~V 2~*
Ans. 1.

7. Divide oa-^h ' c" by h^'vh ^d "

.

Ans. 9i ' c^J"

.

8. Divide 80m"r'"i^c^ by 5m^j"^;r". Ans. IQm'Hc^x'^.

_1 1 _i_ (m+n (l+n) (I+p)

9. Divide 360e -/"^ p by 1 80^7^. Ans. 2e~~^f ^g~'^.

10. Divide4a"c^&'' by a-c^~^e~*. .4ns. ch^d^^e\

20
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RAISING TO POWERS QUANTITIES AFFECTED WITH FRAC-
TIONAL AND ENTIRE EXPONENTS.— MONOMIALS.

289. Since, to raise a quantity to a power is only to multiply it by

itself a certain number of times, the rule for the involution of quantities

affected with any exponents whatever is deduced directly from the rule

of multiplication.

RULE.

Raise the coefficient to the required power, and write after it all the

literal factors affected with exponents equal to the product of their

primitive exponents hy the exponent of the power.

Thus, to raise a/ to the third power, is to take a three times as a

'' \ i 2" 2+^+^ ^
factor. Then, (a")'' = a Xa''y.a =a " =a-^. The exponent

of the result is the product arising from multiplying the exponent of

1 m

the quantity by 3, the exponent of the power. So, (Mx" y=(M.yx°

,

I
J_ L 1

because, (Ma;")" = M X M X Ma;"' +'""'''" + &c. If the given quan-

tity be a fraction, it is raised to the required power by raising the

numerator and denominator, separately, to that power : because, the

power of a fraction is nothing more than the product of the fraction

multiplied by itself a certain number of times ; and a fraction is mul-

tiplied by itself by multiplying the numerators and denominators to-

gether separately.

EXAMPLES.

1. Find the — ^^ power of a". Ans. a '
.

2. Find the m^^ power of a '

.

Ans. a~.

3. Find the f' power of a". Ans. a~^
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l_ —

m

4. Find the —m'" power of a '

.

^4718. a

5. Find the 4*" power of oaVi^ Ans. 81a^c'-6'«,

6. Find the 3" power of the 4<* power of j-. Ans. 12Sa''b-''.

2a
7. Find the 2'" power of ^. Ans. (2)''a''t~^

8. Find the —Shi*" power of a^b^ Ans. a-x^Z/-'^"

9. Find the —5m^^ power of the S"* power of a^P.

Ans. a-^-^b-^"

10. Find the —12«'' power of the —G*" power of ^
+ a''b-''.

11. Find the —12*" power of the —T"" power of j-.

Ans. +a'*b-^.

12. Find the — 11"' power of the —7"" power of ——

.

A71S. —aPb-"".

13. Find the ?"> power of the ^n'" power of a". Ans. a°°".

14. Find the —r*"" power of the m^^ power of a~°

15. Find the r*" power of the —m^^ power of a~"

16. Find the —r*" power of the —m*"* power of a°

17. Find the S"" power of .

18. Find the 5'" power of .

19. Find the C" power of 2a^b^.

20. Find the 6"' power of ~2a}b^

21. Find the 31 power of laH^.

An.
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1 1 1

22. Find the 3'' power of —2a^h^. A^is. —Sab-.

23. Find the i"" power of Ma "Lp. Ans. (Myall v.

EXTRACTION OF ROOTS OF QUANTITIES AFFECTED WITH
ENTIRE OR FRACTIONAL EXPONENTS. — MONOMIALS.

290. To extract the m'** root of any quantity, a^, is to find a second

quantity which, when raised to the m'^ power, will produce the given

quantity, «'. The extraction of a root is then just the reverse of raising

to a power, and, of course, the reverse process must be pursued to find

p p

the root. The m^^ root of a^ must be am, because the m"* power of am

is equal to a^. To raise a quantity, which has a coefficient, to a power,

we first raise the coefficient to the indicated power, and write the new

coefficient before the literal factors as the coefficient of the power.

Hence, to extract the root of a quantity, which has a coefficient, we

must first extract the root of the coefficient, and write it before the root

of the literal factors. The on'^ power of Ma^ is (M)"'a''°', therefore,

the m"" root of (M)"af"" must be Ma''. The ru* power of the fraction

- = — . Hence, the wi"" root of -,— = — . That is, the m"" root of

numerator and denominator must be taken separately.

Extract the root of the coefficient, and write the result be/ore the lite-

ral/actors affected with exponents equal to the quotient arising from

dividing their primitive exponents hy the index of the root. If the co-

efficient of the given monomial is not a perfect power of the degree of

the root to he extracted, the operation is impossible. If the exponents

of the literal factors are not divisible by the index of the root, the lite-

ral factors win appear in the root with fractional exponents. The root

of fractions is extracted by extracting the root of the numerator and

denom in a tor separately.

EXAMPLES.

1. Find the -"^ root of a ^ Ans. a".
r

m Ans (Z—

2. Find the r"" root of a^. ' '^'
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3. Find the m'" root of a^ Ans. ar

.

1
"

4. Find the '" root of a'. Ans. a-°.

5. Find the —m'" root of a •
. Ans. a ^ .

6. Find the — j-'" root of a "^
. Ans. a~~^.

m I

7. Find the —m'" root of a" r . Ans. a'r

.

1 m ^
8. Find the '" root of a~ ' . Ans. a ' .

m

9. Find the 4'" root of Sla'c'W. Ans. 3aVt^

10. Find the 7'" root of 128a''i-''. Ans. 2ah-\

11. Find the q"^ root of (2)''a<'i-^. Ans. 2ah-\

12. Find the —Sm'" root of a-«^t-'^. Ans. aW.

13. Find the r*" root of a"". Ans. a"".

14. Find the 4'" root of l^Jn^. Ans. 2a^^b^.

rt"-/)3 a- 6^
15. Find the 5'" root of —-. Ans. .

c^ c

5 5 11

16. Find the 5*^ root of ——^. Ans. .

c" c

17. Find the 3'' root of 8ah^. Ayis. 2ah^.

18. Find the 6'" root of Mci'b. Ans. 2a*6*.

19. Find the 3* root of —8aZ>i Ans. —2a*6*.

t 21^ j 2

20. Find the t^^ root of (Mya^bp. An-s. Ma°ip.

PROMISCUOUS EXAMPLES.

-i -i 1 _3 _ 3

1, Raise 2a "b ^c^ to the 3* power. Ans. Sa -b ic.

_3 _£ _i _j_ i
2. Extract the 3" root of 8a ^5 p. Ans. 2a 'b pc

20*
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3. Multiply 2a-P6-°'c-'' by ZaPh'^c''. Ans. 6

4. Divide 6 by 3a^h'^c\ Ans. 2a-Pi-"c-".

5. Divide 6 by 2a-P6-"'c-». Aris. Sa^h'^c^

6. Raise 2a^b^c^ to the 6'" power. Ans. 64a'&c^.

7. Extract tlie 6'" root of Q^a^bS. Ans. 2a^b^c^.

1 1 m— 1 n—

1

8. Multiply (M)mar by (M) ma-. Ans. Ma.

m-l E-1 Jl_ 1

9. Divide Ma by (M)"^a"^. Ajis. (M)'nan.

1 1 in— 1 n—

1

10. Divide Ma by (M)^an. Ans. (M)"^a~.

11. Multiply 8a;"V' by ^. Ans. xy.

12. Divide a;y by 8a ^y "*. ^ns.

4 5
3,,4a;oy

4 5
3 ,,4

13. Divide cry by ^^. ^ns. 8a; ^ ^.

o

14. Raise to the third power.

Ans. —Vlhx-^y-^z-^a~''b-^.

15. Raise Va^V to the r* power. Ans. (Vya^'b^'.

16. Extract the r'" root of (P)V^6^ ^ws. Va%\

17. Divide (2)Vi=' by (2ya'"i-". ^ns. 2a' -"'J^'".

18. Multiply 2a''-"i2-m itjy (^2ya"i». Ans. Sa'b'.

19. Multiply 2a^'"&2-m
^^^ (2)V"'J="". ^?js. (2)V"+'">J2('+'">.

20. Extract the s*" root of (W)'^a-'b~'^

.

Ans. (W)''a-'i""^.

Li 10 20

21. Raise 3a^6'- to the 10*^- power. Ans. (py°a'b'.

10 20 12
22. Extract the 10"^ root of (3)"'a^6^ Ans. Sa^b~'.

23. Multiply (4)'a^^* by (ifah^. Ans. (4)V5.
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24. Divide (4)V6 by {^fah^. Ans. (4)'a^6*.

25. Divide (4)Vi by (4)'a-6*. Ans. {Afah^.

11 3 3

26. Raise —a"&^ to the 3''* power. Ans. — d^h^.

i I 4
27. Raise —a'h^ to the 4*" power. Ans. + a^i^.

I 2 3

28. Raise tx^y^z'^ to the c*" power. ^ns. (2yxy^^.

2 2 £
29. Extract the c*" root of (2)'x/^'. ^ns. Ix^y^z^.

30. Find the r'" root of ^X. Ans. 2a~^.

31. Raise 2a~' to the r"" power. .4hs. (2)'' a"".

32. Raise aVrUo the 10'" power. Ans. a%\

33. Extract the 10"" root of a'1/. Ans. a'b\

34. Raise a-^i« to the 2'' power. ^tis. ah'''

35. Extract the square root of aZ*'-

1

vl?«s. a-^i-®.

36. Raise a-'^h-'^ to the 6"" power. Ans. a-°"b-°'\

37. Extract the 6'" root of a-o'^i-^'l Ans. a'^'b-'^.

38. Raise a'"«6-«» to the 1000'" power. ^Ins. a'b\

39. Extract the lOOO'" root of a'b^. Ans. a-°°'b-<^.

40. Multiply ah^ by a^^^i-^. A^is. a-'=i«

41. Divide a-"6"^ by a-6". ^?is. a-^b-^.

42. Divide a-^5Z>-« by a-^S-^'. ^ns. a'i-*.

43. Multiply (10)2a-2i-=' by (lO/a- "J-

^

Ans. (lO/a-^S-*.

44. Divide (10)^a-^6'5 by (\^fa=b\ Ans. (\^fa-%-\

45. Divide (lOya-^i-^ by (lO/a-26-3. Ans. (l^ya-^b-\

46. Multiply (10)-'a-'6-«by(10)'a--'6-^. Ans. (\Ofa'b-\
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47. Raise 2aZ>V to the yVh power. A71S. (^ly'a-'hh".

48. Extract the yigth root of {^y'a-'h-h^ Ans. 2ah^c\

49. Raise (2)':r?/V to the /^ih power. Ans. {2y^x-^yh-\

50. Raise (2)5a'"5" to the /gth power. Ans. 2a-^'"h-^\

It will be seen that decimal powers are smaller, and decimal roots

greater, than the quantities themselves.

CALCULUS OF RADICALS.

291. Any quantity with a radical sign is called a radical quantity,

or simply a radical. Thus, \/a, \^b, Vc^, are radical quantities, or

radicals.

The coefficient of a radical is the quantity prefixed to the radical

sign, and it indicates the number of times, plus one, that the radical

has been added to itself. Thus, 2y/a and m^/a, indicate that ^/ a has

been added to itself once and vi— 1 times. When no coefficient is

written, unity is understood to be the coefficient. Thus, >/ a = ly/a.

When the indicated root can be exactly extracted, the radical is said to

be commensurable or rational. Thus, v/4 and ^8 are rational radicals.

When the indicated root cannot be exactly extracted, the radical is said

to be incommensurable or irrational. Thus, s/2 and ^ 5 are irrational

or incommensurable radicals.

A root has been defined to be a quantity, which, taken as a factor

a certain number of times, will produce the given quantity. An even

root is a quantity, which, taken as a factor an eve7i number of times,

will produce the given quantity. But no quantity taken an even

number of times will produce a negative result. Hence the even root

of a negative quantity is impossible. The indicated even roots of

negative quantities are called imaginary quantities. Thus, y—2,

^—2, v'—2, are imaginary quantities. Roots that are not imaginary

are called real roots.

The term rational is in contradistinction to irrational.

The term real is in contradistinction to imaginary.

A quantity may be real and not rational ; but no quantity can be

rational or irrational and not be real. Thus, V2 is real, but not

rational; but v'4 and \/2 are both real.
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292. It has been shown that all radicals may be changed into paren-

thetical expressions ; the numerator of the exponent of the parenthesis

denoting the power to which the quantity under the radical sign is

raised, and the denominator of the exponent of the parenthesis

denoting the index of the radical, or the degree of the root to be ex-

tracted. Thus, v/a* may be changed into a-, and -(/a™ may bo

changed into a".

293. A simple radical is one, which, when changed into an equiva-

lent parenthetical expression, has unity for the numerator of the

exponent of the parenthesis. Thus ^a, i/a, &c., are simple radicals.

A complex radical is one which has the quantity under the sign raised

to some power different from unity. Thus, \/a', ^a", are complex
3 ^

radicals, the equivalent parenthetical expressions («)"-, and (a)", having

numerators different from unity.

29-4. Radicals are said to be similar when they have the same index

and the same quantity under the sign. Thus, 2yja and 3's/a are

similar radicals. The ^ a and ^a are not similar, because, though

the quantities under the radical signs are the same, the indices of the

radicals are different. The s/ a and \/6 are dis.similar, because the

quantities under the signs are different.

295. Similar powers of the same quantity can be added by adding

their coefficients. Thus, 2a^ -f 3a^ = 5a^ ; because, since the literal

factors are the same, they may be represented by the same letter, x.

Then, 2a* -f 3a^ = 2x + 3x = Sx, and replacing x by its value a^, we

have the sum of the two quantities equal to ba^. For a like reason,

similar powers of the same quantity may be subtracted from each other,

by taking the difference between their coefficients and uniting this

difference as the coefficient of the common quantity. Thus, 5a'—
2a» = 3a^

296. In the same way, similar radicals may be added or subtracted,

2s/ a-{- •y/a = 3v/a. For, make V a = a; ; then 2v/a-|- v/« = 2x+
X = Zx = Z^ a. So, also, 2s/a— y/a = y/a.

297. The calculus of radicals shows how radicals may be operated

upon algebraically—added, subtracted, multiplied, &c., &c.

These algebraic operations must be in accordance with certain prin-

ciples, which both modify and facilitate them. It would require an

extended treatise to embrace all the principles of the calculus of

radicals. A few of the most important only are given in this work.
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First Principle.

298. Any parenthetical expression, composed of several factors, may

be decomposed into as many new parenthetical expressions as there are

p p p p

factors. Thus, (aZ>c)T = (a)q (5)q (c)q .

For by the rules for raising a monomial affected with any exponent,

fractional or entire, to a power, each factor has to be separately raised

P P £ P

to the indicated power. Hence, (cihc)i — (a)q (b)i (c)q . And, in

p P L H
like manner, (a'"i"c'')q = (a'")q' (6")i (c')'' •

299. This principle has an important application in the case of simple
I I I 1 I

radicals. For (abed)'" = y abed, is also equal to (a)" (&)n (cf {dy
or to ^a . y 6 . ^c ^ d. Hence, ^ abed = </a ^b ^c ^ d. That

is, the n"" root of the product of any number of factors is equal to the

product of the n"* roots of these factors.

300. This property of radicals is used for two distinct purposes.

1st. To simplify radicals. Let it be required to simplify or reduce

V 75a^c. We see that the quantity under the sign Iba^c, can be de-

composed into two factors, 25a^ and 3c, and that the first is a perfect

power of the degree of the root to be extracted. Then, V l^a^c =
v'25a^ X 3c, which is also, by the property just demonstrated, :=:

v/25^2 v/3^ = 5a V3Z In like manner, ^l^^c = V^^ X ^7=
2rt ^c. Then, to simplify or reduce a radical, we have the following

RULE.

Decompose the quantity under the sign into two factors, one of which

shall be a perfect poioer of the degree of the root to be extracted. Ex-

tract the root of the perfect power, and write this root before the incom-

mensurable factor.

301. 2d. The property, that the li"" root of the product of any number

of factors is equal to the product of the n"" roots of those factors, is also

used to make radicals similar which appear dissimilar. Then, after

they have been made similar, they may be operated upon algebraically,

added, subtracted, &c., like simple algebraic expressions.

Thus, -J ^a^c and m-J c appear to be dissimilar. But y/ 4:a^c =^

\/4a^ . c = \/4«^ -y/c = 2iasf c. Hence, if it be required to add \/\d^c

and m v" f? we may represent %/ c by .r, and the sum of the two quantities
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will be 2ax + mx or (2a + m) x. Now replace x by its value -J c, and we

have ^/ia^c -{ m-J c =^ (2a + m)-sfc. In like manner, 26^8aV
and — 2ac^c^V^, appear to be dissimilar. But, 26y8aV =
2b^Sa^c' x~? = 26^8^ Xj/7 = ^achV^, and — lacVTV' =
— 2ac^ 6^(c^) =— 2ac .e^

6« V c^ = — 2ao6 ^7. Hence, 26^ 8aV—
2ac^<?b^ = 2ac6v/c^. To operate upon dissimilar radicals, we bave

then the following

RULE.

First make the radicals similar, then represent the common radical

hy X, or conceive it to he so represented, and operate upon the new radi-

cal expressions according to the rules for simple algebraic expressions.

The following examples will afford illustrations of the two applica-

tions of the principle, that ^abc, &c. = ^a . ^b ^ c, &c. For the

sake of simplicity, we will assume the own signs of all the radicals to

be positive.

1. Simplify the expression v/lGaV6*. Ans. AacV^y/cb.

2. Simplify the expression ^'llxS/z'. Ans. Sxy^z^s/z.

3. Simplify the expression V50a'6V. Ans. bab\'.X/2ahc.

4. Simplify the expression y24a*6V. Ans. 2a6Vy3a"

5 Add the radicals V16a='6"'c2 and + 2a¥c^a.

Ans. Qah^Cy/a.

6. Add the radicals v/ SOa^^i^" and + 5a'"Z;^V26-^°.

Ans. 10a""i2ny2^

7. Add the radicals 4V a-^fc-^c-P and + oa'^'V'c^^^a'H-^-'''^

.

Ans. 1 s/ar'b-'c-^.

\. Add the radicals 4:a'b'^ ^/'?' and 8c vV^.
Ans. Vla'b^sj'c'.

). Reduce -J 21 + s/i2 — -Jlh to one sum.

Ans. Ov/37orO.
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10. Reduce 750"+ n/8+ v/32"+ \^18 + n/162 to one sum._

Ans. 23 v/ 2.

11. Reduce 2^^ + 4^7"+ 2ay7to one sum.

Ans. (2 4- 4c +2ac2)^'c^

12. Reduce ay/ 20 +• Jv/5— Cs/bU^ to one sum.

yIhs. (2a + &— c&)v/5'.

13. Reduce ab\/ 72 + c\/8 + m«\/18<- to one sum.

Ans. (Gah + 2c-\-Smnc)y/^.

14. Reduce 5 yS'and ^SaV to one sum. ^l«s. (5+ ac2)4/8.

15. Reduce 12 V"'^"^ and m^d'. Ans. (I2ab^ + md)^d.

16. Reduce a ^ 6='+V+^?i and m .y n'+'6V.

J.ns. (ahc -{ mn') -^b^c^n.

17. Reduce ViS+SaN/T^ + e^vMS— 24JVT2.

Ans. (2 +5rt— 12Z>)x/12.

18. Reduce 40^^" + SacVc"^— 9ac\/c to one sum. Ans. 0,

19. Reduce 12iV«"'"'"c'°' + 5mV« to one sum.

Ans. (12&ac2 + 5m) Va^

20. Reduce 3\/aV6^ and —2abcy/abc to one sum.

^?is. abcy/abc.

The whole difficulty in solving these examples consists in finding the

incommensurable factor common to all the radicals.

Second Principle.

302. The Ji"" root of the quotient of two quantities is equal to the

quotient of their w* roots. That is, \ / — = —

—

V 6 «/6-

For, to raise a fraction to any power, we raise the numerator and

denominator, separately, to the required power. Hence, to extract any

root, as the n'", the root of each term of the fraction must be extracted

separately.

This principle is used in extracting the roots of fractions.
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Third Principle.

303. The mn^^ root of any quantity is e(|ual to the m^^ root of thy

n^ root of that quantity. That is, '":y~a = k/ ^ya.

A quantity, a, may be raised to the sixth power by first squaring a,

and then cubing the result. Hence, the sixth root of a® might be

extracted by first extracting the square root, and then extracting the

cube root of the result. So, a may be raised to the wiJi"" power by

first raising it to the ?<'" power, and then raising the result to the m""

power. Hence, the m?*"' root can plainly be extracted by taking first

the n"", and then the m"" root, in succession.

304. This principle is of great importance, and extensive applica-

tion. It is used to extract high roots in succession, whenever their

indices can be decomposed into factors.

Thus, V256(W^=:\/y"2om^iW = ^ l()a^6« = \a^V

All even roots, and roots that are multiples of 3, can be extracted in

succession. The sixth root is equal to the cube root of the square root.

The eighth root is equal to the fourth root of the square root, or it can

be found by extracting the sfiuare root three times. But the fifth root,

seventh root, eleventh root, &c., cannot be extracted successively.

When the principle can be applied, we begin by extracting the low-

est root first. The index of the radical must be decomposed into its

prime factors, and the root corresponding to the lowest factor ought to

be first extracted. It frequently happens that the factors are equal.

EXAMPLES.

1. Extract the eighth root of 256a'i^

2. Extract the sixth root of Tl^a}%^\

3. Required V 6561 a^^6'2 j^^g g^ejs^

4. Required ^'25<o^F'. Ans. 4:ah^.

21 Q
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1 1

5. Required V4096a6. Ans. 4a^i®.

8/ 4~T 1 1

6. Required \765536a^6^ Ans. 4a%^.

7. Required -^/MOl^W^ Aiis. Sa^L\

8. Required "^ a'^h'K Ans. ah\

9. Required ^-^IZly^iHj^. Ans. 2,a^l\

In this example, extract the s"" root first.

Fourth Principle.

305. The coefficient of a radical may be passed under the radical

sign by raising it to a power indicated by the index of the radical.

That is, PVa = 7P"a. For, P^yP^; hence, PV«'= 7P" 7'"^;

but, by the first principle, V~^ 7^= VP"a- Therefore, P7a =
VP'^

306. The fourth principle is, obviously, just the converse of the

first principle. The latter enables us to pass a factor outside of the

radical ; the former, to place a factor under the radical. The fourth

principle is frequently used in the differential calculus. It has two

applications in Algebra: 1st. The approximate value of incommen-

surable roots can sometimes be found more exactly by means of this

principle. Thus, |n/T= n/(|)'^. 7 = V^^s = | : true to within less

than \ . A nearer approximation to the value of the expression has

been found in this instance by passing the coefficient under the radical.

But, for such expressions as | ^/ 2, f ^/ 5, nothing is gained by passing

the coefficient under the radical.

2d. The fourth principle may be used instead of the first, or in con-

nection with the first, in making radicals similar which appear dissimi-

lar. Thus, 9av/6, and v'^lo^ are dissimilar, until either 9a is

passed under the radical, or 81a^ is passed without. Sometimes it is

difficult to employ the first principle to make radicals similar, because

it is not easy to perceive the incommensurable factor common to all the

radicals. But there is no difficulty in employing the fourth principle.

Pass all the coefficients under their respective radical signs, and then
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decompose the numerical and literal factors into their prime factors.

If the radicals can be made similar, common factors will become appa-

rent after the decomposition into prime factors. Let it be required to

ascertain whether 2a ^ab^, and h^a^b^ are similar. The equivalent

expressions are ^Ha'^b^, and ^ a^b^. The two radicals have, then, a

common factor, a^b^, under the sign. This common factor can be de-

composed into two others, one of which is a perfect power of the degree

of the root to be extracted, and the other incommensurable. The in-

commensurable factor may be made a new radical, and the given ex-

pressions being decomposed into factors, one of which is this incom-

mensurable factor, will be similar. We have, in accordance with this

rule, 2ay^b'= ^J^ -^ ^"8^^ ^IdJ^ = 2ab^7d/, and bV^^
= V^^= ^'^^ab' = ab^ab\

Take, as a second example, 7 V x^, and x ^24:01 x1/ ; by passing 7

and X under the radical signs, we have ^2A0\x^if, and v/2401a;*^.

Hence, V2401a;^ is a common factor, and the given expressions reduce

to Ixi/ xif and lx\/ xy, and are not similar, since they have no com-

mon incommensurable factor. We have, then, a simple process for

ascertaining whether radical expressions can be made similar.

RULE.

Pass the coefficients of the different radicals tinder their respective

signs, and then examine whether there is a common incommensurable

factor. Jf so, the radicals vxay be made similar by taJcing the incom-

mensurable factor as a new radical. Write before it, for new coeffi-

cients, the roots of the commensurable factors of the respective expres-

sions, and we loill have a series of new radical expressions, all similar.

If there is no common incommensurable factor, the radical expressions

are not similar.

EXAMPLES.

1. Add together 2a ^Jc^ and ^c¥jb?.

Then
, 2aybc^= V4:a^_bf= sf\a\^>Jbc and ^cb^s/b&= >/96V =

s/^V& -Jbc. Hence, sfbc is a common incommensurable factor, and

the sum is {2ac -f- 35c) s/ be.

2. Add Ax'^y^s/a^<? and aczs/a¥c together.

Ans. i^do^y"^ -f b^z) ac-f ac.
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3. Add toi^ether J^SiO^^ and Gas/ 240a.

h ^/ 54 0o'> = y/ 3 . 5 2^3V6^ and 6a V 240a = V 36 . 3 . 5 . 4V.
Hence, y/o.S.a, or \/15a, is a common incommensurable factor, and

the sum of the two expressions is (Qah + 24a) \/ 15a.

4. Add together V90 and V'MO.

y/90=V3^5.2 and v/810 = n/3\2.5. Hence, v/2.5 is the

common incommensurable factor, and the sum is (3 + 9)v/ 10.

5. Add together as/2AQ and Z>n/2400. ^hs. (6a + 206) VG".

6. From a v/300 subtract Z>V"243. Ans. (10a— 9Z>)V37

7. From a V 33750 subtract 6-^/10000.

Ans. (Sa— 2h) ^l250"

8. Add the three expressions, hay/ ax, mx^\/Qa'^, na" s/ x.

Ans. (ha + 3ma + n^s/ax.

9. Add the three expressions, ha^~ax, mx'^^27a* + na^ ^x.

A?is. {ha + 3ma + n)^ax.

'ax + mx* ySla^ + na'^ ^Ic.

Ans. (ha + Sma -f- n)^ax.

10. Add the three expressions, haijax -{ mx'^ y 81a^ + na'^ ij x.

Fifth Principle.

307. Any factor may be passed without a parenthetical expression,

by multiplying its exponent by the exponent of the parenthesis.

p mp p

Thus, (a'"hc) q= a 1 (6c)<i

.

L 1LP Jl P
. n

For, (a"'hc) i = a'ih'ic'i, since each term has to be raised to the —
9

nip p p

power. And, by separating into factors, we have at x tqci, which is

mp p

also equal to a •) (hc)^

.

If there is more than one term within the parenthesis, any term or

a factor of any term may be passed out, by dividing all the terms by

the expression to be passed out, and then writing that expression out-

side of the parenthesis, with its primitive exponent multiplied by the
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exponent of the parenthesis. Let it be required to pass a" without the

parenthesis (a^S + c)i. This may be written \a'°lb + — I p= (a"'J)i

^ p g p

— ai (fZ)^. In which d = h -\—~ or h -{- a-'^c Hence, (a"'Z> + c)5

Dip p

It matters not how many terms there may be within the parenthesis

;

they may be all represented by a single letter, after they have been

divided by the factor to be passed without. The foregoing demonstra-

tion will then be applicable.

EXAMPLES.

1. Pass X without the parenthesis (xy^z^)~~^.

Ans. x~^(i/^z^~

2. Pass x~^ without the parenthesis (x~^y^z^y.

Ans. X " (i/^z^'

Pass X without the parenthesis (:c ah)-

Ans. x(ahy

4. Pass 4 without the parenthesis (4a2i')-. Ans. 2(a2?'^)-

- £ 5- 1
5. Pass x'' without the parenthesis (a:''?/'"^)P. Ans. x(y'";^y,

6. Pass 8 without the parenthesis (Sahy. Ans. 2 (ahy.

7. Pass IG without the parenthesis (IGahy

.

Ans. 2(ah)

8.
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(4 (mx + nx"^) + (m + 2nxf )*
11. Pass 4 without tlie parenthesis

Ans

3

(mx + ^ix"^ + 4 (wi + '2-nxy )-

12, Pass the term 4a without the parenthesis (4a +h + cy.

Aiif;. la \i-+ ^ / •

13 Pass the term 8a' without the parenthesis (Sa" + i + •

Ans. 2a\ o

14. Pass the term bo? without the parenthesis (pci? -{ h -\- c)"

.

Any number of terms may be passed without, by representing them

by a single letter, and then replacing that letter by its value after the

transfer has been made.

15. Pass (a+ i) without the parenthesis (a + i + c)". Let a -f h

= X. Then, (a + h -\- cf = (x \- c)* = x^(l + x-'c)^ = (a+ i)"

I

1 + (a + i)-'c 1^

16. Pass (a + h -\- c) without the parenthesis (a -{- h -\- c -}- dy.
.h

Ans. (a + i + «)-
I
1 + (a + & + cy\l

\

'

17. Pass (a + i 4- c) without the parenthesis (a -\- h + cf.

Ans. (a + 6 + cy (Tf or (a + & + cj.

18. Pass a~° without the parenthesis (a"" + ly.

Ans. a~p(l + a^hyp

.

The last example shows that any factor affected with a negative ex-

ponent may be made to appear with a positive exponent in the other

terms of the parenthesis. This transformation is used in the differential

calculus when it is desired to change a negative into a positive exponent.

It is evident that the fifth principle is only the more extended appli-

cation of the first principle.
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Sixth Principle.

308. Any factor may be passed within a parenthesis, by multiplying

its exponent by the reciprocal of the parenthesis.

Because, to pass it out again, we must multiply its new exponent by

the exponent of the parenthesis, and when its new exponent has been

formed as directed, the factor, after it has been passed out again, will

p ^ p.

be afifected with its primitive exponent. Thus, a'"(i)'» =(ai'Z>)'i.

Because, when av is passed out again, the expression will become
mq p 2 p^

OP q(i)<i = a'"(6)i.

EXAMPLES.

A71S.
I

{2ya + {2fb I".

1. Pass the coefficient 2 within the parenthesis (a -f U)

2. Pass the coefficient 2 within the parenthesis (a + i) .

Ans. (8a + U).

— —
3. Pass a" within the parenthesis (a" -f-

i)i

.

^q , q »q p_

Ans. (a p p + api)q .

4. Pass a" within the parenthesis (a p -|- 6)i

.

mq p_

.4ns. (1 + a p^»)i.

5. Pass a"" within the parenthesis (a"" + H) .

Ans. (a-^ + Z*a-="")~*.

6. Clear 8(ia + iZ>)"- of its coefficient. Ans. (^ + A-.

7. Clear 64("--^ + -^Y of its coefficient.
\4U9ba lb/

8. Clear 27(2a + |6)- of its coefficient. Ans. (18a + b)^.
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9. Clear 32 (2a + Ib)^ of its coefficient. Ans. (8rt + b)^.

Ans. (25a + 1256)"

--a + -b\^ of its co-

efficient.

11. Clear tlie parenthetical expression a~(l + a~')^ of its coefficient.

Ans. (a-j- 1)^

It is evident that the sixth principle is only the more extended ap-

plication of the fourth principle.

Seventh Principle.

309. The denominator of the exponent of a parenthetical expression may

be multiplied by any quantity, provided vre raise the quantity within

p

the parenthesis to a power denoted by the multiplier. Thus, (0)1 =
Z pp JL '^ -^ JLJL

(a'")""'. For (a)T= an, and (a"')""! = W'l = a )
. Hence, (a) i = (a'")°"i.

If there is more than one term within the parenthesis, their algebraic

sum may be represented by a single letter, and the foregoing demon-

stration is, therefore, applicable to all kinds of parenthetical expres-

sions.

810. The seventh principle has two applications. 1st. It is used to

cause complex radicals (or parenthetical expressions with the nume-

rators of their exponents different from unity), to be alFected with ex-

ponents having a common denominator.

Thus, (a + by^ and (a -f i)^, can be changed in accordance with the

3 4

principle into the equivalent expressions ( (<x -f- bf)*^ and ((a-f 6)'^)^.

We see that a second parenthesis has been written within each pa-

renthesis ; and we see, also, that the exponent of the first new paren-

thesis is the quotient arising from the division of 6, the least common
multiple of the denominators of the exponents of the given parentheses,

by the denominator of the exponent of the first given parenthesis.

The exponent of the second new parenthesis is the quotient arising

from dividing the same least common multiple, 6, by the denominator

of the exponent of the second given parenthesis. In like manner,
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2 3
.

-3_

(a + J)3 and (a + 5)* may be changed into ((a + by)^' and

Hence, to cause parenthetical expressions to be affected with expo-

nents having a common denominator, we have the following

RULE.

Take the least common multiple of all the denominators of the ex-

ponents of the parentheses, and divide that multiple hy the denominator

of the ej-ponent of every parenthesis. The several quotients will indi-

cate the power to which the quantity within their respective parentheses

must he raised.

1. Change [a + £)"> and (a H- J)""", into equivalent parenthetical ex-

pressions, the denominators of whose exponents shall be the same.

P_ _£_

Ans. ( (a + ^)° )
'"'' and (a + t)""".

JL -P.

2. Change (a -f t)™* and (a -f- i)""-, into equivalent expressions.

Ans.
( (rt -f hy )

»"' and
( (a + Z^)" )

»^°.

311. 2d. But the most important application of the seventh prin-

ciple, is in reducing simple radicals to a common index.

* ?. — — J -. _
Thus, since a" = o*", or \/ a = ^a^, and a = a", or %/ a = -J/o',

it is plain that \/a and i^a, can be reduced to a common index. So,

^a and ^a, may be changed into the equivalent radicals '"^^a"' and

'"^a". In each instance, the power to which the quantity under the

radical is raised is indicated by the quotient arising from dividing the

least common multiple of the indices of all the radicals by the index

of the radical under consideration.

RULE.

Form the least common mxdtiple of the indices of all the radicals.

Raise the quantity under each radical to a power indicated hy the quo-

tient arising from dividing the least common multiple hy the index

of the radical under consideration.
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Reduce v' a, i/ «j and ^/ a, to same index. The least common mul-

tiple is 12, and the three quotiente^ ^'i^ ^> V^ ^ ^> ^°^ V' = ".

Then the equivalent radicals are -7 a*, J^ a^, and '-^ al

EXAMPLES.

1. Ecduce y"a^ Va^ y«^ and ^~a^io same index.

^«s. 'V'^, 7"^, 7"^, and ^"^.

2. Eeduce Va, v/a, C/c, '^o, and v'a, to same index.

Ans. ^-i/"^5^ ^"^2, ^^^, ^"^, and ^o^.'

3: Reduce ^ a, 'X/a, '-7 a, V a, and ^ a, to same index.

^ns. ""iP/7i"", '""^~a", ""^a"', ""Vo^, and "Va^.

4. Reduce </a, V«j \^a, ya, and Va, to same index.

12s'

Ans. ^a'% '^a'^ ^.n >^a»', and '^a'.'

5. Reduce ^o, ^ a, ^^ a, ^ a, '-^a, Va, and Sya, to same index.

Ans. 7^, V~^, 7"< 7^ VTtV7^and ^"^

6. Reduce '^/a, "yo; ^ct, y/ a, ^a, and '"-7 a, to same index.

Ans. "^"^""^ -"7^^ "71:?°, "70°^', "^o^ and '"7"(?^

7. Reduce -;/«, ^"^ ^^ 4/o7V«7 v' ^7 V^T and 7«7 to same

index.

^HS. 2520/-^^ 2520,"^, ^520,^ 2520/-^4^ 2520/-^0^ ^^^O/"^ 2520/^

and 2520/^,

It will be seen that simple radicals are changed into complex by the

operation of reduction to a common index.

Eighth Principle.

312. Any factor of the index of a complex radical may be sup-

pressed, provided, (he same factor is suppressed in the exponent of

the power to which the quantity under the sign is raised. That is,

"7 a" = V a.

For, '"7 a'" = (a)"^ = («)" = \^ a-
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This principle is just the converse of the last, and reverses the results

of the last. It is used to simplify complex radicals, and frequently

reduces them to simple radicals.

EXAMPLES.

1. Simplify Via + hf, V (a + hj, '^ (a + hf and l^(a + h)\

Ans. >J a + 6, V a + 6, y a + h, and ^ a + h.

2. Simplify fi/(a + h)\ 'Via + i)'°, V{ci -f hf, and 8/(a + i/.

^«s. v/(a + hf, (a + ^')', Va + i, and X/(a + 6)'».

3. Simplify v/(a+6)«, V(a+t)', !e/(a+&)'S V(a+^')^ V(«+i)'*-

^ns. (a + />)^ ^(a + Z/), N/(a + 6/, (« + i), (a + i)^

4. Reduce X/~^, V< ^< and V'^.

Ans. V a, i/c, y/a, and y/a.

5. Reduce i^y"^, 7~^, 7^, V"^ and 7^
Ans. i/'a, i^i, V«, 7"^, and7 oT

6. Reduce ""Vo^, "'"</aS ""Vo^ ""V^^, "V^i^-

^7JS. ^«, Vfl, 7«, yo, and -C^a.

7. Reduce ^^^"^5, ^^1?, ^^7?^, ^7^, «y;?; and «yZ
j47is. v'a, ^a, 7 a, 7«, 7«, and 7 a.

8. Reduce '"7«"S '"'</~a", ""7 a", ""70^% '"7'o^, and '"X/'a\

Ans. 7a, "7a, 7o, 7a, v'a, and '"7a.

9. Reduce ^''^°/
a'""", =^^7"^, ^320/^^ 2520/-^^ 2520/"^ 2520, mT mzo^"^^

and 237"^

Ans. s/a, 7a, 7a, 7a, 7*0", ^o", 7^7 and 70^

313. There are two consequences of the last two principles, of con-

siderable importance. 1st. Whenever it is required to extract a root

of a complex radical, which is a multiple of the exponent of the quan-

tity under the sign, the extraction can be indicated by suppressing the

exponent under the sign, and multiplying the index of the radical by
the quotient, arising from dividing the index of the required root by
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the exponent under the sign. Thus, let it be required to take the

sixth root of \/ «*, the result will he y a. For, the sixth root of v/ a?

3 1 3 1
is equal to (a~)''= a = a"* = i/ a. In like manner, the j^Jt"" root

n _1_ n 1

of iy"a" = ''v^- For the j^n"" root of V a"= (a")?" = av^ = aP" =
Va- These results have plainly been formed in accordance with the

rule.

314. 2d. Whenever it is required to raise a simple radical to a power

which is a factor of the index of the radical, the operation can be per-

formed by dividing the index of the radical by the exponent of the

power, and writing the quotient as the index of the radical instead

of the old index. Thus, let it be required to raise Va to the square

power. The result will be %/a; for the second power of the sixth root

X 1 1 _
of a is («^)^ = a^^:^a^ = V a. So, likewise, the Ji"" power of '^

a

\_ "J.
z= :^ a. For the 'n}^ power of V • a = (aP»)" = op" = ap =-y a.

The following are applications of the consequences.

EXAMPLES.

1. Required d**" root of -y/a*. Ans. i/a, or a.

2. Required 6*" root of -y/a^. Ans. ^a.

3. Required 7«° root of ^/a^'^. Ans. a.

4. Required 4*'' root of ^a^. Ans. %/ a.

5. Required ^m*'' root of v^a". Ans. ^a.

6. Required 12'" root of %/c^. Ans. l^oT

7. Required 4*'' power of i/a. Ans. a.

8. Required «;*'> power of t;/a. Ans. a.

9. Required wm*"* power of "^a. Ans. ^a, or a°.

10. Required m*"" power of '"i/a. Ans. i/a.

11. Required 3* power of lya. Ans. X/O"
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12. Required 12"' power of ^a.

13. Required 6*" power of v^a.

14. Required S*"* power of l^o.

15. Required pni^^ power of '""^a.

TO MAKE SURDS RATIONAL BY MULTIPLICATION.

CASE I.

Monomial Surih.

315. Suppose the given surd is ^ b ; this is equivalent to i° . Now,

it is required to multiply i^ by such a quantity as will make it rational.

Since the surd will be rational when the numerator of the fractional

exponent is exactly divisible by the denominator j and, since, in multi-

plication, we add the exponents of the same literal factors, the multiplier

of J " must be h, affected with such an exponent, that, when added to

— , the sum of the two exponents will be a whole number. Call x the
n

unknown exponent of the multiplier, then x -\ = 1, or .r = 1
11 11

n — 1 "-=-' 1 ^jil= . Hence, the multiplier is i "
, and we see that h'' X h "

= b, & rational product. Had we placed x -\ =2, and found the

multiplier under this hypothesis, the product would have been h^.

But, when it is required to make the surd rational, and of the first

degree, the sum of the primitive exponent, and the unknown exponent,

must be placed equal to unity.

Let it be required to find a multiplier which will make ?/* rational.

Then, X + i = l, ov x — i. Hence, the multiplier is i/^, and we see

3 1
that ^^ .

1/'^ =y is3L rational product.

22
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RULE.

Place the primitive exponent, plus x, equal to unity ; find the value

of X from this equation. The value so found will he the exponent of

the midtiplier. The multiplier itself must he the given monomial, ex-

clusive of its exponent, raised to a power indicated hy the value ofx.

1. Find a multiplier which will make x - rational.

Ans. X " .

2. Find a multiplier that will make y^ rational. Aiis. y".

3. Find a multiplier that will make y ° rational. Ans. y'

4. Find a multiplier that will make y^+'" rational.

Ans. y ''-^'"
.

Corollary. ^

316. The principles demontrated in Case I. enable us to find the

approximate value of fractions whose denominators are monomial surds.

RULE.

Mxdtiply both terms of the fraction hy such a quantity as loill make

the denominator rational. Approximate as near as may he desired

to the true value of the monomial surd in the numerator, and then re-

duce the fraction to its lowest terms.

5
1. Required the approximate value of to within -01.

Ans. 1*58.

6 WW 5(3-16) _ 15-80 _
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2. Required tte approximate value of —= to within -001.

Aj}s. 1-732.

3. Required the approximate value of —= to within -01.

Ans. 2-52.

4. Required'the approximate value of —=:^=r to within -001.

VIOOO
Ans. 3 162.

6. Required the approximate value of —= to within 01

Ans. 4-65.

6. Required the approximate value of —z=:zr: to within -0001.

VIUUO
Ans. -189738, nearly.

7. Required the approximate value of — to within -1.

;y4uo
A71S. 54-2.

8. Required the appi'oximate value of ___ to within -01.

Ans. 2-32, nearly.

9. Required the approximate value of —z= to within -000001.

v/320

Ans. 3-577781, nearly.

g
10. Required the approximate value of —=iz to within -001.

v^2
Ans. 2-519.

15
11. Required the approximate value of —= to within -001.

V lo

Ans. 3-873, nearly.

30
12. Required the approximate value of to within -001.

Ans. 3-873, nearly.

13. Find the approximate value of —= to within -01.

Ans. 5 04, nearly.
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14. Find the approximate value of —^= to within -01.

Ans. -89.

18
15. Find tlie approximate value of —

=

^18' Ans. 6-87.

CASE II.

317. To find a multiplier that will make rational an expression, con-

sisting of a monomial surd, connected with rational terms, or consisting

of two monomial surds.

Let it be required to make rational ^/p }- y/q hj multiplication.

From the principle demonstrated in Case 1., it is plain that y/jj can

only be made rational by multiplying it by v^^j, and V q can only be

made rational by multiplying it by Vq- But, unless v/p and <>/ q, in

the multiplier, are connected by the sign minus, there will be two terms

in the product remaining irrational and unreduced. Hence, the mul-

tiplier must have the minus sign between its terms.

Thus, \/p + Vq
Vp— Vq
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Let it be required to make y/p + v^g rational by multiplication.

The operation is as follows :

p + Vfq
+ Vp'f- + ? __ _— Vfq— Vp(l

p -j-
(J
= Product.

The multiplier, to make ^j^ rational, must be ^jr ; and the multi-

plier, to make ^q rational, must be ^ qK But, after multiplication

^y Vl^ 4- ^^2^ there remained two uncancelled surds, "</p^q and

V q^p, and these could only be cancelled by multiplying the given ex-

pression by — Vpq-

To make rational ^'p— ^ q, the multiplier must be ^p^ + ^ (f

-\- \/pq. The multiplier, then, in every case, is the sum of the cube

roots of the squares of the quantities diminished or augmented by the

cube root of the product of the two quantities, according as the sign

between the surds is plus or minus.

Let it be required to make Vp -\- >/ q rational. The operation is

as follows

:

4/p
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<;ive.s a product containing two surds, witli a common index one-lialf as

great as the common index previous to multiplication, it is evident

that the number of multiplications will he indicated by the exponent

of the power of 2 in the primitive index, common to the surds given to

be reduced.

Thus, %/j> -}- \/<2 can be reduced by three multiplications, since

8 = 2'. And lyp + v/<? can be reduced by four multiplications,

.since IQ = 2\ _ _
The reduction of the ^p -f ^q, and i^p -f [/q, is as follows :

v/p -r \/'J = Given surd,

v/p— x/? = ^i^'^*- multiplier,

VF— V? = v/p"— \/7= First product,

i/jJ + V? — Second multiplier,

l/p^— X/<i= s/p— Vl — Second product,

s/p + \^9, = Third multiplier,

p — q = Third product.

V^ + V'q= Given surd,

\/p— v^2' = First multiplier,

V'f—V~q= ^J— ^^= First product,

y/P + \^(l = Second multiplier,

x/p^— ^q^=^p— i/q= Second product,

i/¥+ V~q = Third multiplier,

v/p— y/q =: Third product,

Vp + \/<? = Fourth multiplier,

p — q = Fourth product.

We have this process for the reduction of -i/p + %/q.

i/p + ^q z= Given surd,

s/yi ^ VF— W?— s^¥<f + n/p¥ = Multiplier,

p + ^yq
+ ^pq' + ? _— -^J^'q

— -^pY
— ^pY— ^pI

+ j/pY + VpW
p + q = Product.
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The v/p~+ \^2 can be reduced in a similar manner.

\/p^+ %/(]_= Given expression,

fi/p— \/? = Fi'"'^^ multiplier,

({/p^+ %/~^= Vp — VT— ^"'st product,

Vp^— V^ + l/m = Second multiplier,

p — q = Second product.

All expressions composed of two surds, whose common index is a

multiple of 2 and 3, may be reduced in a similar manner.

Thus, ^^p + '^q = Given expression,

y/p— v/g- = First multiplier,

Vi?— ^q = First product,

%/p + V? = Second multiplier,

^p— \/q = Second product,

Vp— Vq + Vpq = Third multiplier,

p — q = Third product.

All expressions composed of two surds, whose common index is some

power of 3, may be reduced in the same manner as l/p + l/q.

Take as an example

y/p + ^q = Given expression,

^P + V?— Vpq= First multiplier,

Vf -f V? = VF-^ yq~= First product,

Vp^ + s/q^— Vpq = Second multiplier,

p + 5' = Second product.

Take as a second example, %/p + %/q.

Then, %/p + %/q = Given expression,

%/f + ^?— \/pq= First multiplier,

X/F-^- \/?^ = Vp+ Vq = First product, which can be

reduced as before.

The reduction of l/p +1/ q, is more difficult than any of the pre-

ceding? reductions.
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We will write the terms of the product that cancel each other in the

same vertical column.

1/p -'tl/q = Given expression,

^/+ 77— ^¥9— ^p¥+ ^'pV+ l/YP— v'W = Multiplier.

P + VW9+1 + v^— VY^— vW+ ^W+ W^
— -y/? —^^ + '^p'^t+ yv\^— v^^'— ^-/vW

p + 2' = Product.

All expressions composed of two monomial surds, may be rendered

rational when the surds have a common index. The amount of diffi-

culty attending the reduction depends altogether upon the index.

When the index is some power of 2, the reduction is very easy. But

when it is 7, 11, 13, 17, &c., the reduction is difficult.

When an expression is given to be reduced, we must first examine

the factors of the common index, and make our reduction correspond

to those factors.

Thus, let it be required to render rational l^p + l^g-. The factors

of 15 are 3 and 5 ; we must then reduce the expression by the- first

multiplication, so that the common index of the result shall be 5.

Thus, v'p + v/? = Given expression,

15/p _|_ y~f— '4/pq= First multiplier,

'5/pi~_|, '.^^ = ^p -f- ^q, which can be reduced as before.

To reduce the ^^/p+ ^^'q, we must use such a multiplier as will leave

a common index, 5, in the product.

Thus, Vp + Vl,

]yp^— 10/^2 = s/p — ^q^ which can be made rational as

before.

Let it be required to reduce v'p + X/q.

The factors of the index are 3 (2)1 Therefore, we must first get

rid of the factor, 3, and reduce the expression to a common index,

(2)' or 8.
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\/p + v/? = Given expression,

24/^ + ^^J—'Vpq = First multiplier,

%/p -{- %/q ^ First product,

Vp — \^9. = Second multiplier,

X/p — X/q = Second product,

Vp + v/? == Third multiplier,

V'p — \/q = Third product,

yp -\- ^q = Fourth multiplier,

p — !/ = Fourth product,

CoroUari/.

318. The principles developed in Case II. enable us to find the ap-

proximate value of a fraction, whose denominator consists of a mono-

mial surd connected with known terms, or of two monomial surds.

2
Let it be required to find the approximate value of —=^ z:^

v/o + v/2.

Th.n
^ 2(^5 -v/2) _ 2(2-23 -1.41) 2(0-82)

'*^'°'
^/5-+ ^-2 - 5-2 - 3

=-—
-
=

1-64
—^ to within -01.

EXAMPLES.

1. Required the approximate value of —= ~ to within -01

Ans. -59.

2, Requii-ed the approximate value of
'—- to within -01.

^'"- -59-

For _3 ^ 3(8 — ^/5)^ 3(8 — 2-23) 3(5-77) 17-31

+-^5 64— 5 59 69 ~~59~'

3, Required the approximate value of =: to within -1.

4+ V2
Ans. 12-6
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66 ^ 66 ^ 66 .(^(4/ + V(2)^— ^(4)^ 2)

°''4+^"2~^4^+y'2 (^4='+^2X^(4f+ ^(27-^(4^) -2)

_66 ((4^ + 1-6-5) _^^^^~
^(4/ + 2 "

2
4. Required the approximate value of —= r^ to within -1.

^4 + ^2
Ans. -7.

For
^ _ HVW+VW— 4/4^_ 2(2-5 + 1-6—

2

^1 + y2 ~ 4+2 6

4-2

5. Required the approximate value of = to within -01.

Ans. 13-23.

6. Required the approximate value of —=: =:l to within -01.

Ans. 1-08.

7. Kequired the approximate value of ^ to within -1.

Ans. 14-4.

30
8. Required the approximate value of — n^ to within -1.

V 25 + V 5

Ans. 6-4.

9. Required the approximate value of -^rr to within -001.

•s/6— \/5
Ans. 37-44.

2
10. Required the approximate value of —r= = to within -1.^^ ^4—^2

Ans. 6-1.

CASE III.

To make ratimial an expression containing three or more terms

of the square root.

319. Let it be required to make rational ^p + ^q + ^n.

t
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The process is as follows :

\/i> + y/q. + >/« = Given expression,

^/p— v/J + x/« = First multiplier,

— y/pi — ^/(^H—
q^

p— q -\- 11 -\- 'l^pn = First product,

p— q -\- n— 2^pn = Second multiplier,

(P— ? + «)*— -^Pf- = Second product.

Let it be required to make rational ^jj + v/'i — \/»-

The process is as follows :

v^p + v/? — v/'i = Given expression,

\/i> + n/? + \/^i ^^ First multiplier,

p + \^pq— s/pn

+ Vpq -\- q ~ >/q>^

+ s/pn + \/9»— n

p -{ q — " + ~\/pq = First product,

p -h q— n — ~\/pq = Second multiplier,

(P + q— '0^— -^Pq = Second product.

Take as a third example ^'p— y/q + ^lii + v/«.

^P— s^T + Vm + y/n

y/p + >/q — ^m + ^n

p— \/pq + -^pm + s/pn

n + -^pn — \/ nq -\- ^/ am

—q + ^pq + \/nq + ^qm
—m — s/jjni — y/mn + \/qm,

(jj + %— q— m) + 2-^pn + ^^qm = First product,

(j3 + «— g— m) — I'sfpn + 2 y/qm = Second multiplier,

P* + 4P%/^TO— 4j9tt + 45'7?i = Second product reduced, and

in which P represents

the. rational term.
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We may represent P^— ij^n + 4(pn by M^, and then we will have

M** -f AY^qm = Second product,

M^— 4Pv^"^ = Third multiplier,

M^— IQF'qm = Third product.

CoroUari/.

320. The principles of Case III. enable us to approximate to the

/alue of a fraction containing three or more monomial surds.

EXAMPLES.

1. Reduce —=: ^r^ to an equivalent fraction having a rational

denominator. Ans. 5+^/5— v'30.

For _ ^^_ _ 10(^5 — VQ^+ 1)^ ^
V5 + V6 + 1 ' (V5 + V0"+ 1) (v/T— ^6"+ 1)

10( s/5 — V'G + 1) 10 v'"5(V 5"— ^/ 0"+ 1)

2^5" 2(5)
VSO + v/6.

The approximate value of the result can be found, if desired.

2
2. Reduce —z= —

^rr. to an equivalent fraction with a ra-

V6+v/8+v/14
tional denominator. A^is. (\/6— \/8-f V14(6— V 84)

'

=48

20
3. Reduce iz= :z= = to an equivalent fraction with a

1+ V5+ v6+ v/10

rational denominator.

Ans. (1 — V5— V6"+ n/TO~) (v/TO + v/"30)__ _.

Q

4. Reduce —== = =——=. to an equivalent fraction with
^1 + ^/2 + v/3 + ^4 ^ ^

a rational denominator. Ans. (3 — ^2 — ^3) (4 + 2^/6).
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2
5. Reduce —= = z= r=:to an equivalent fraction with

^3 + ^5 + ^6 + ^/8

a rational denominator.

Ans
(v/3"— v/5"— v/6 + ^/8j (^24 + ^30)

— 6

2
6. Reduce —= -= = = to an equivalent fraction.

v/3 -f v/5 + >/6 + v/10_ _ _
Ans. v/3 — v^S"— v/(r+ v/TO.

EXTRACTION OF THE SQUARE ROOT OF A MONOMIAL SURD
CONNECTED AVITU A RATIONAL TERM, OR OF TWO MONO-
MIAL SURDS.

321. Before we proceed to extract the root, it will be necessary to

demonstrate three principles upon which the extraction depends.

First Principle.

The square root of a quantity cannot consist of the sum of two parts,

one of which is rational and the other irrational.

For, if possible, suppose \/ a = x + y/y. Then, by squaring both

members, we get a = x^ + 2xi/y + y- From which, ^/y =
^ . That is an irrational quantity equal to a rational one,

which is absurd. But the absurdity has not resulted from an error in

the analysis, and must, therefore, be in the condition.

Second Principle.

When the first member of any equation contains a monomial surd,

connected with rational terms, and the second member is made up in

the same manner, the rational quantities in the first member are equal

to the rational quantities in the second, and the irrational quantities in

the two members are respectively equal also.

Let a 4- \/b = X + i/i/, then a = x, and </ 6 = -yy.

For if a be not equal to a;, let a = a: ± m. Substitute this for a

in the equation, and there results x±m + v/^= x + y/y, or ± m
-f y/b = \/y, which is impossible, (principle first.) Therefore, it is

absurd to suppose that a is unequal to x. Hence, a = x, and the

equation becomes a + s/h = a -\- sf y, or by cancelling a, s/h — yjy.

23
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Third Principle.

If \/ « + \/^ = a; + ^y, then will y / a — ^/h = x— -^y.

For, by squaring the first equation, we get a -\- ^/h = x^ -\- 2x\/y

From which a = x^ + y (2), and ^h = 2x^/2/ (3)-

Subtract (3) from (2), and we have a — ^Y= x"— 2x^y'+ y (4).

Extracting the square root of both members of (4), we have

\ / a— y/h = x— s/ y.

This last equation has been correctly deduced from the equation

v/a + ^h = cc + y/y, so that it is a true equation, provided that the

equation from which it is deduced is true.

322. The foregoing principles enable us to deduce a formula for the

extraction of the square root of an expression made up of two mono-

mial surds, or of one monomial surd connected with rational terms.

Let, \Ja + ^T= X + ^y. (1).

Then, \/a— ^T= x— ^Y- (2)-

Squaring (1) and (2), there results

a + Vh = x' + 2x^yj- y. (3).

a — ^h = x^— 2xy/Y^y. (4).

Adding (3) and (4), and cancelling (2) in the result, we get

a=^x^ -^ y. (5).

Multiplying (1) and (2), we get ^a^— h — x'— y. (6).

Adding (5) and (6), we get " "^
'^f ^ = x\ (7).

Subtracting (6) from (5), we get "^ = y. (8).
2

Extracting the square roots of both members of (7) and (8), and

there results \ /^Liu^^^^ln^ _ x. (9).
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and s/'-^.f-' -Vj. (10).

By adding (9) and (10), we get the value oi x + y/y^ov of the

equivalent, \/«+ n/^-

By subtracting (10) from (9), tvc get the value of x— ^i/, or the

equivalent \/ a— \/^

Hence we have, by performing these operations, the two formulaJ,

(A).

^/a_ ^T= \/» + ^^^- \/"UZ^^I^. (B).

By using the double sign =b, we may unite (A) and (B) in one

formula.

We will now show the use of the formula?.

EXAMPLES.

1. Let it be required to extract the square root of 9 + v/45. Then,

by comparing 9 + ^/\:b with a + v/6, the quantity whose root is to

be extracted in (A), we see that a = 9 and h = 45.

Hence, s/a + ^T= y/o + ^-35 = y/S+^Sl-iS _^

s/
9— V81— 45

v/71+ yl

A result that can be verified; for, squaring it, we will have, H +

2. Required the square root of 9 + V72. By comparison, we get

a = 9 and h = 72.
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And from (A) we get v/o + V72 = \

/

^ + V81 — 72
_^

This result can be verified; for, squaring it, we get 6 + 2^18 + 3

= 9+ v/72:

3. Required the square root of 9 — v^56.

Then, a = 9 and h = 56. Formula (B) must be used.

From (B) we get \J^ — ^/56 = \/^ + ^^^ ~ ^^ _

. /9 — ^8r=r5BV 2 = \/7 — n/2.

Squaring this root, we have, 7 — 2v'14 + 2 = 9 — v/56,

4. Required the square root of 9 + 2%/ — 162.

Pass the 2 under the radical , thus, 9 + 2^— 162 = 9+ V— 648,

and v/fl^— &= V81 + 648 = V 729 =27, and the application of

the formula will give \ /9 + 2v/'=^62 == Vl8+ V—"IT.

This result, when squared, will give 18 -f- 2 s/— 162 — 9 = 9 +
2v/— 162. Hence, the result is true.

5. Required the sum of \/9 + 2v^—162, and \J^—2-/—lm.

Ans. 2VT8:

This result can be verified ; for, 2V 18 squared = 72 ; and the given

expression, when squared, produces 9 + 2s/— 162 + 9— 2v/— 162

+ 2s/81 + 648 = 18 + 2v/729~=18 + 54 = 72.

6. Required the square root of \/8 + ^/— 1.

A^. ^^^ +^^^2 ^ V 2

This result can be verified by squaring it. We will get -f-

n/8 — 3 ^ /8— 9 ,_ ^
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7. Required the square root of 1 + V— 15.

Ans. VT+ v/^.
Verify tte result by squaring it.

8. Required the square root of 1 + 2>/— 20.

^ns. V^ + v/— 4,

Verify the result by squaring it.

9. Required the square root of 1 + V— 288.

Ans. 3 + /
Verify the result by squaring it.

10. Required the sum of \/l+s/—2W, and \/l— v/^2BB.

Ans. 6.

We see that the square root of an expression containing an imagi-

nary quantity, cannot have all its terms real. But the sum of the roots

of two expressions, involving imaginary quantities, may be real and even

rational. The formulas (A) and (B^t are generally applied to expres-

sions for which y/
a"—b is rational.

11. Reduce —= to an equivalent fraction with a rational

V9 -I- V*i _
denominator. Ans. 10 (y/o — v/2).

For
^^ = 10 (vw - vw - Vim+i/Wf) ^

= 2 (v/27— ^Y— ^/T8'+v/T2)=2(3v/'3 — 2^2"— 3^2+2^/8)

= 2 (5v/3"_ 5^/2) = 10 (v/3~— ^2).

Or, the reduction may be performed thus, -^— —- =—^

(^3-fv^2)(^3_^2 3-2 ^^ ^ ^

4
12. Reduce —r= = to an equivalent fraction with a rational

V5-ft/4 ' _ _ _
denominator. Ans. 4 ( (2 + v/o)(n/5)—2^/2 — y/KJ).

23*
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4 _ (yy — 4/(4)^ — V(5/4 + V5(4)^) _
_V5+Vi~_ _ 5-4 _

4(^5 4/5— v/8— v/l<^ + 2^5) = 4((2+^5)(^5)_2^2—
n/10).

5
13. Reduce —= ^^ to an equivalent fraction with a rational

y4 + i/2 _ _
denominator. Ans.

| (^4 -(- (3/2 — 1)2).

p^^ _5 ^ ^
(y (4)^ + V(2)^_ 3/(4) (2)

y4 + 3/2_ (y4 + y2) (^(4)^ + V(2)^- VC4) (2) )

=
I (2^2 + 3/4_ 2) = 1(3/4 + (^2_ 1)2).

14. Reduce —t=z= — to an equivalent fraction witli a rational

y27+V8
denominator. Ans. ^.

For _^ = 6
(^(27)^+ V(8r-y(27) (8))

' V27 + y8 35

The result is rational because the given expression was really

rational, though under an irrational form.

15. Reduce :=^ to an equivalent fraction with a rational de-

n -f- V'wi

nominator. . m (n— \/m)
Ans. 3 .

IMAGINARY QUANTITIES.

323. Any expression whatever, made up of monomial surds and

rational terms, or monomial surds only, may be rendered rational by

repeated multiplications. The few examples given will show the man-

ner in which these multiplications must be made. No general rule can

be given in regard to them. There is a particular class of monomial

surds, which, when rendered rational, present some differences from

other surds in regard to their algebraic signs. These are imaginary

surds.

An imaginary quantity has been defined to be the even root of a

negative quantity, because no quantity, taken as a factor an even num-

ber of times, can give a negative result. Thus, y/— a, %/— o,

%/— o, ^;/— a, are imaginary quantities.
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If tlie indicated root be of the 2ni"' degree, then ^^— a may be

written ^^a ^^— 1 = 6\/— 1. In which, h represents the 27H*''

root of a, whether that be rational or irrational. And we see that all

imaginary quantities may be decomposed into two factors, one of which

is an indicated even root of minus unity, and the other of which is

real, and sometimes rational.

This decomposition must always be first effected previous to opera-

ting upon imaginary quantities.

To square v/— «; "we first write the expression v/o v/— 1 ; these

two factors will both drop the radical when squared. Hence, (^Z— a)^

= W^ V-^^= («) (- !)=—«.

So, also, (y—of = (v/a v/— 1)' = (ds/a) (—1 y/—l) =
Qx/— a-

(^— «)^= (v/<( ^/— l)'= Or) (+ 1) = + a'

(v/— af=(ya ^— iy=(a' ^a) (+^/— l)=aV-

(v/— a/=(v/a v/- !/=(«') (- 1) = — «'•

The table shows that tlie even powers of imaginary monomials are

always real, and that their signs are alternately plus and minus.

324. A table of products will show the modifications of their alge-

braic signs.

(+ x/— ")(+ n/— »):^+(v/av/— l)(v/av/— 1) = (^a)

(+v/— «) (—y/— g)^ (^^^ZTT) (_^^^^Q = (y-^

C-v/«)(n/-1)(n/— !) = +«.

C+yZ—g-) (+v/— ^) = i^a ^— 1) {^b y/— 1) = (^a)

(x/i) (>/— 1) (v/=l) = -x/^

(—n/— «) (—%/— 6)=(—v/a y/— 1) (—v/6 y/— 1)=(—^a)
(-V/^ (y/=^ (x/^^) =—x/"^
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(-fV-<0 (—v/— /^) = (v/a V— 1) i—s/h V— 1) = (v/a)

(— v/TT) (v/^^1) (v/— 1)=+^"^.

We see that like signs produce minus, and unlike signs produce

plus, wlien imaginary monomials are multiplied together.

325. "We will now form a table of quotients.

^v-
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Now let it be required to divide —86^ by 2.h^— 1. Then,

—86^ SiV^^^v/"^^^^ ^ _ 4^ xTZT:

1h^—\ 26v/—

1

EXAMPLES.

1. Multiply + x/— a by — ^— h. Ans. + y/ah.

2. Divide ^ab by x/— a. Ans. — ^— 6.

y/ab _ s/a y/h _ y/ZT _ — v/6^n/— Iv/— 1 _

— n/6'n/— 1 = — V^^>.

The minus sign is placed before the square root of h, in the expres-

sion, — v/6 v/— 1 v^— 1, in order to make the result positive.

Since ^— 1 y/— 1 = —1.

3. Divide v'"*^ by —V— ^- ^"S- + v^— <*•

4. Multiply ai^— c" by •/— a^bc. Ans. — a^bc ^bc.

5. Divide — a^bcy/bc by y/— a-bc. Ans. -f- abc y/— 1.

6. Divide — a%Cy/bc by (fi^/— ^^- '4?is. + « s/— be.

7. Multiply — V— abc by — abcy/— abc. Ans. — a?b^<?.

Divide'—a^6V by — v/— aic. Ans. — abc V— abc.

9. Divide — a^Z*V by — abc yf— abc. Ans. — V— abc.

10. Add together asj— 6- and ^v/— a^. Ans. 2.ab-s/^^.

11. Eequired the square power of a + hsj— 1.

Ans. a^ + 2.abs/—\ — h"^.

12. Required the square root of a^ + 2a5-/—"l — ^<^

-4ns. a -f i'/— 1-

13. Required the third power of a + by/— 1.

Ans. a'— ZaV + Sa^^^v/^a — ^V'^T.
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14. Required the product o{ a 4- hs/— 1 and a — h^— 1.

Ans. a" + y.

15. Required the quotient of a^ + Z*^ by a + hy/— 1.

Ans. a— hs/— 1.

16. Required tte quotient of a^ + Why a— hs/— 1-

Ans. a + h\/— 1.

17. Required the cube root of ci" + Za^hJ^-l —Sah'— h\/^.
Ans. a -\- hs/ — 1.

18. Required the fourth power of a + &>/— 1.

Ans. a" + '^aj'h JZI\ — QaW— ^aVV— 1 + h\

19. Subtract 2 2a^ from 10vA=^. Ans. 8v/^=^.

20. Add together 8x7"=^ and 22/Zr2. Ans. lOs/— 2.

21. Muhiply V— a + -J—h by v— «— %/— 6.

Ans. h— a.

22. Divide h — « by v'— ^ + 7— a.

Ans. — /

—

h + V— a.

23. Multiply J- + 2 s/^=r^ by J — 2 ^—a. Ans. \ + 4a.

24. Divide I + 4a by i + 2v7Zr^. ^^s. i — 2x/'^^..

25. Multiply 2 t/^Ta by 3 v/^T^. ^ns. 6V^^ V—

^

26. Divide 6v/— a ^— a by 2^^^^. ^hs. 3s/-^^.

27. Divide 6v/— a V^=^ by 3 v/^^f~ ^hs. 2y^^.

28. Multiply V^^^+ t/^^6'by y^=^— y"^^=^.

J.J2S. V

—

a— v/— i.

29. Multiply 1 + 6v/'^=T+ cV^irTby l_Z)V^^^nr+ cV^lT
^}»S. 1 + ^2_ g2 ^ 2cn/— 1.

80. Multiply 1 + 6v''=T + c^/—"l by 1 + Z/^I^ — Cy/^^TT"



EXTRACTION OF ROOTS.

31. Multiply 5v/— 1 + V— 3 by 3v/— 1 — V— ^7-

Ans. —15— 3v/3'+ 15^/3~+ 9.

32. Required the second power of 5v/— 1 + ^Z — 3.

Ans. — 25 — lOv/o — 3.

33. Required the square root of — 25— 10^/3"— 3.

Ans. 5v/IIT— 3.

34. Divide 6 4- v/— 4 by 2 + y/— 9, and make the denominator

of the quotient rational. ^ 18 — 14*/— 1
Ans.

-^3
.

For
^+ ^-j = (6+ v/-4) (2 - y/ - 9)

2 + v/—

9

(2+s/— 9) (2— ^—9)
12 + 2^— 4 — 6^— 9— y/ 3(j y/— 1 y/— 1 ____

4 + 9

12 + 4v/— 1 — 18y/"=nr+ 6 _ 1«— 14v/^^
13

~
13

35. Divide 2 + V— 2 by 2 — v^— 2, and make the denominator

of the quotient rational. , (2 + y/— 2)^ 2 + 4y/ir2
^ns. -^^ -^ or

G (5

30. Divide 1 -|- y/— 1 by 1 — /— 1, and make the denominator

of the quotient rational. Ans. y/— 1.

37. Required the quotient of Gy/— 4 divided by 2y/

—

~^.

Ans. 2.

Rcmarhs.

An examination of the foregoing results will show some properties

of imaginary quantities.

1. Real, and even rational results, may be obtained by the ordinary

algebraic operations upon imaginary quantities.

2. Two monomial imaginaries raised to an even power, will always

give a rational result.

3. Two monomial imaginaries multiplied together, or divided, the one

by the other, will always give a real result.

4. A monomial imaginary connected by the sign, plus or minus, with

one or more rational terms, and then raised to any power, will give at

least one imaginary term in the result.

5. Any expression involving one or more monomial imaginaries, may

be rendered real by one or more multiplications.
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EQUATIONS OF THE SECOND DEGREE.

827. An equation, involving a single unknown quantity, is said to

be of the second degree, wlicn the highest exponent of that unknown

quantity in any one term is 2. Thus, x^ -\- x = m, and x^ -{- a = h,

are equations of the second degree with one unknown quantity.

An equation, involving two unknown quantities, is said to be of the

second degree when the highest sum of the exponents of the unknown

quantities in any term is equal to 2. Thus, xt/ = ?h, a;^ -f ?/ = ??, and

y'^ -{- x=p are equations of the second degree with two unknown

quantities. For they may be written, x'j/' = in, x^if -f ^ ^= n, and,

y^x^ -f a- = w, and, thei'efore, come within the definition.

We will begin with equations of the second degree, with a single

unknown quantity. These are divided into two classes, complete and

incomplete. A complete equation of the second degree, with a single

unknown quantity, is one which contains the second and first powers

of the unknown quantity. Thus, a-^ + a = 0, clx^ + x = m, and

ax'^ -f hx = c, are complete equations of the second degree, with one

unknown quantity. There may or may not be other terms, besides

those involving the unknown quantity. The first and second powers

of the unknown quantity may or may not have coefficients different

from unity.

An incomplete equation of the second degree is one containing the

second power only of the unknown quantity, and it may or may not

involve terms in which the unknown quantity does not enter. The

unknown quantity may or may not be affected with a coefiicient diffe-

rent from unity. Thus, ax^ = x^, x^ -\- m == n, ~—h c = — q are

incomplete equations of the second degree. Equations of the second

degree, with one unknown quantity, are frequently called quadratic

equations, because the unknown quantity is raised to the second

degree, or squared.

INCOMPLETE EQUATIONS.

328. We will first examine incomplete equations.

hx^
The general form of such equations is ax^ \- d =^e. By

transposition and reduction, we get (ca — h')x'^ = ce— cd, or c'^ =
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~ -^ = q, by substitutinsr for the known terms in the second
ca— 6

member a single term, equal to them in value. Hence, ever}- incom-

plete equation may be reduced to two terms, and the equation be

placed under the form of x^ = q. Owing to this circumstance, incom-

plete equations are sometimes placed in the class of hinomial equations,

or equations involving but two terms.

There is no difficulty in solving the equation x^ = q. The square

root of the first member will give us x ; but if we extract the square

root of the first member, we must extract that of the second also, or

the equality will be destroyed. Extracting, then, the root of both

members, we have dti x = zt: ^/ q. We have prefixed the double sign

to both members, because this equation, when squared, must give back

the original equation, x^ = q, from which it was derived, and either

+ X or — X, when squared, will give + x'^, and either + V q, or

— ^/q will, when squared, give q.

The value of the unknown quantity, or the root of the equation, as

it is generally called, has been defined to be that which, substituted

for the unknown quantity, will satisfy the equation, that is, make the

two members equal to each other. We sec that an incomplete equa-

tion of the second degree has two values, numerically ccjual, but

aff"ectcd with different signs. Either value or root will satisfy the

equation, for the result of the substitution of either V*/, or — y/q for

X, in the given equation, will he q z=q. We have prefixed the double

sign to both members, but it is usual to prefix it only to the root. In

that cape, however, we must understand that the sign of x is not neces-

sarily positive, it being afi'ected with the positive sign only, when it

corresponds to the positive root. It becomes, then, necessary to have

some notation to distinguish the values. This we will do by dashes.

The X that corresponds to the positive root we will write x' ; and the

X that corresponds to the negative root we will write x". The fir.st is

read x prime, and the second, x second. It will be shown that a com-

plete equation has two roots, generally unequal in value. We will

also distinguish these roots or values by writing them x', and x". Some

equations of high degrees have three, four, &c., values. These will be

written x', x", x", x^'', &c., and read x prime, x second, x third, x

fourth, and so on.

To solve an incomplete equation, it must first be put under the form

of x'^= q. That is, all the known terms must be transferred to the

second member, and the coefficient of x"^ must be made pins unity, if

24
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not already so, by dividing both members by the coefficient of x-.

After the equation has been put under the form of x" = q, extract

the square root of both members.

EXAMPLES.

1. Solve the equation, 2x^ + 1=4.
Transposing, and dividing by the coefficient of x"^, we get x^ = ^.

Hence, x = ± vT. Then, x' =+y/J, and x"= —Vj. The solu-

tions may be left thus, or we may extract the indicated root approxi-

matively.

2. Solve the equation, 2x^ + 4 = 1.

Reducing, we get x^=±^— ^. Then, x' = -\- y/
—

^, and x"

These roots are imaginary. How are we to interpret them ? An
imaginary quantity indicates an impossible operation. Ought not the

equation which produces it involve an impossibility ? In this instance,

2x'^, an essentially positive quantity, is added to 4, and their sum is

required to be less than 4. The condition of the problem is, then,

absurd, or impossible, and the result is impossible, as it ought to be.

It will be shown more rigorously, hereafter, that an imaginary solution

always indicates absurdity in the conditions of the problem. The ima-/

ginary values, though they fail to satisfy the conditions of the problem,

yet will satisfy the equation of the problem ; as they manifestly ought

to do, since they have been truly derived from it. Substituting either

+ v/

—

?>, or —v^— -?, for x, in the equation, 2.x^ + 4=l,we get — H

+ 4 = i, or 1 = 1.
~

329. We observe, then, this remarkable analogy between imaginary

values in equations of the second degree, and negative values in equa-

tions of the first degree. The values, in both cases, will satisfy the

equation of the problem, but will not satisfy the required conditions.

There is, however, this difi"erence : to convert a negative solution into

a positive one, numerically equal to it, we have only to impose a single

condition; but, to convert an imaginary solution into a real solution,

precisely equal to it numerically, we have generally to impose two

conditions. Thus, the equation which gives the imaginary solutions,

expressed in words would read thus : required to find a number, twice

the square of which, augmented by 4, will give a sum equal to 1.
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The values are cc' = + «/— 3, and a;" = — \/— |. Now, to get

real values numerically equal, and not to make any change upon the

arithmetical values of the known quantities in the equation, it must

be changed into 2aj^— 4 =— 1. This equation, expressed in words,

would read thus : required to find a number, twice the square of

which, diminished by 4, will give a difference equal to — 1. The

values of the new equation are cc' = + \/ -|- |, and x" =—V+l-
These values are real, and differ from those in the first equation only

in the signs of the quantities under the radicals. To get these new

values, we made no change, arithmetically, upon the numbers in the

first equation, but we made two changes of sign, or, in other words, we

imposed two conditions upon the equation of the problem.

3. Solve the equation, x^ + h = a.

Ans. x'=z-^\/a — bj x" z=z— s/ <-'' — h.

Now, let a =4:, and 6 = 6. Then, a;' = -f 1/— 2, and x" =—
y/— 2. To get the real values, x' = + >/ 2, and x"=— %/2, we

must make h and a interchange values, b must be 4, and a, G ; that

is, two conditions must be imposed.

4. Solve the equation, ^— 1 + x"— 4 + 5 = 3x='— 7.

Ans. x' = +2, x" = — 2.

5. Solve the equation, - -_ 1 -|- .^2_ 9 _,_ 5 = 3_,.2_ 22.

Ans. cc' =: +3, x" =— 3.

x^
6. Solve the equation, — — 1 + .x^_ IC + 5 = Sx^— 43.

Ans. a;' = + 4, x" =— 4.

7. Solve the equation, 'jx^ —^ + 4x' — 20 + IOO.t;^' — 500 =
o

995— 199x1 Ans. x' = + v'S^ x" = —^'b.

8. Solve the equation, ^+ ^ _|._3+7^2— 42 + 999x2== 5994.

Ans. x' = + ^6, x" =— v^ey

The preceding examples are simple, and the solutions can be readily

obtained. But there are many of a more complicated character, and

of course more difficult to solve. No general rules can be given to aid

the student 3 he must exercise his own ingenuity. It is well, however,
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to make the clearing from fractions the firet step in every reduction,

and then, if there is a single radical in the equation, it ought to be

placed in one member by itself.

1. Solve the equation, ^ 3 = -r'44
Clearing of fractions, we get ^/x^ + 144 + 12 = x^.

Placing the radical by itself, we have y/x"^ + 144 = x^— 12.

And squaring both members, there results x^ + 144 ^= x'^— 24x'^ +
144. Hence, a" = ^bx", or x^ = 25. Then, x'= + 5 and x" = — 5.

x 10
2. Solve the equation,

+ ^x' + 44 22-

Then, 22a; = lOx + 10^/x^ + 44, or 12x = IQ ^ x^ + 44.

Squaring both members, we get 144^^^ = lOOx^ + 4400, or 44a;''

4400. Hence, x' = 10 and cc" = — 10.

^7'2~Iir77v
3. Solve the equation,—'—^ + Z> = x^

Ans. x = — —— , X = — —
.

c c

These results can be verified by substituting either the value of x' or

x" for X in the given equation. Then we will have \ / ^ \- V(?

A + 2lc^ A , . , , , 1 + Sic'^ ,,,= cl -^ 61, or, by squaring both members, ^ 1- 6-r

Hence the equation is satisfied.

4. Solve the equation, ;==r = —

.

X + ^x^ -\-a a

+ & „ -6
^??S. X' :=

-v/a— 26 v/^f
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Verify these results. What do they become when a =2b? "Why ?

What, when a = ? Why ? What, when 26> a ? Why ?

5. Solve the equation, ^p^ + x^ + x = mjc.

Av -' — ' ^ -" — ^
ins. X =

Verify these results. What do they become when m = 2 ? ^^hy ?

What, when wi = ? Why ? What, when m = 1 ? Why ? What,

when p = ? Why ?

When there are two similar radicals, it is best to unite them in the

same member.

p o , ,, ,. h-\-hy/\— 3? a
0. bolve the equation, = —

,

i + mv/l— a;^ »

An. x'=+ ^-'{-^'-l')+-^anHI>-m)
nh— am '

^a? jm^— b') + 2an/j (6— m)

ni— am

For, clearing of fractions, we get nh + nh^l — x^ = ab + am
-v/1 — x'^, or, («i — am) ^/l — ic^ = 6 (a — n), or, (hJ — amf
(l — x^) = U'(a—ny.

Developing, we get n~b''— 2nba7n + a-m^— x'' (nb— ajuf = b^a^

—lanb^ + bhi^. Hence, a== {in^—b^) + 2a?j6 (6—«i) = x^{nb— amf.

Hence, .• = + ^^llMH^IIl^mHS, ." = _
{lib— ani) '

V a"- (w^— Z.^) + 2a?i6 (6— m)
7i6— am

7. Solve the equation, n-^p^ -{ t? \- ax= xy/p^ + a;* + an.

Ans. x' = + -v/a'^—p^ and a;" =— V «^— P^

Verify these results. AYhat do they become when a^= p2 ? Why ?

What, when/> a^ ? Why ?

330. There is another value which does not appear, it is xz=n.
For, by the second principle, Article 321, the rational terms in the two

members must be equal. Equating them, we get ax= an, or a;= n.

This ought to be so, for the given equation can be put under the form

of (n — a;) y/p^ + x'' — a (n— x) = 0, an equation which can

plainly be satisfied when x = n. The given equation, previous to the

24*
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division by the common factor, n — oc, was really a cubic equation, and

contained three values. We are sometimes enabled to detect a value, as

in the above example, by equating the rational factors. When the root

of this equation will also satisfy the equation formed by equating the

radicals, it is, of course, a value in the given equation.

8. Solve the equation, p-,/x^— ct^ + a = n^/ x^— a^ + x.

( (P— '0' + 1)
Ans. x=^a, ox x^=.a \^—-.— ~.

1 — (i>— »)

331. There arc some expressions in a fractional form, which must be

changed into equivalent fractions with rational denominators.

n o , ^1 X-
ni + X + y/ 2mx + x'^

9. Solve the equation, -

m + X— v^ 2mx + x^

. , (1 + ^li)' „ (1 - JTi)'
Ans. X ^m :=r: , X = m ^—

.

2(2+ Vw) 2(2— v/n)

For, by multiplying numerator and denominator of the fraction in

, „ , , T (m -\- X -\- -J 2mx \-
x^^"^

the first member by the numerator, we get ^ =^ n.

Clear the equation of fractions, and extract the square root of both

members. Then, m + cc + s/'^mx + a;^r= d= m-s/ n, or in (1 dz Vn)
— x=i— ^2mx + x^. Squaring both members, we get m"^ (1 rt \/ rif

— 2mxy\- ± V 7() + a;'^ =r 2mx + x^, and, by transposition, m^ (1 =h s/nf

m(l ± ^nf
2mx (2 rb \/n). Hence, x =z

2(2 ± Vn)

10. Solve the e<:|uation, —^^^==z z==^^== 1.

^x^— a'—^x'^— a''

Making the denominator rational as before, we have

(v/.-+aHV^--a-)-^^^^^^,^^.^,^-^^^,^^,_^,^^^.

Then, 2^x' — a'= 2a^— 2x\ or ^x'— a' = x-— al

Squaring again, we get x*— a'* = x*— 2a;V + a*, or 2a;V == 2a\
or x^= a^ Hence, x' z= -}- a, and x"=— a.

It will be seen that these values satisfy the equation. In this ex-

ample, the second step was not to extract the square root of both mem-
bers, as in the last example, because the double product of the radicals
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gave a simple result. When the radicals are of such a form that their

double product will not give a simple result, it is best to make the

second step the extraction of the square root of both members.

11. Solve the equation, —
.

==-= 1.

Ans. x' =^ + h, x"

12. Solve the equation, = — -».

^x^ + 8m^— ^x^— m^

Ans. x' = + jn, x" —

Sometimes the first step is squaring both members.

,001 XT- X- n/" + ^c + v/a— X Im
13. Solve the equation, = = \ / —

•

y/'lm V n

,
'"^ ^a -9 II

^'l -: n
Ans. X =^ -\ y/Ian— ??r, .7: = y^/'lan— m^

14. Solve the equation, ^/a + x + ^/a — x = y/la.

Ans. x' =z + a, x" = — a.

- _ „ , , . v/fl + X + \/'i — X X
15. Solve the equation, -— -^ = —

,

Ans. x = + 2>/am — m^, x" = — 2V am— m'.

What do these values become when m = a? What, when w^ a ?

16. Solve the equation,
~

=- = -.
^

.T + 1 2x— 4

Ans. x' = + y/b, x" = — >/5.

2.7; 4- 4 X 2
17. Solve the equation,

~~
p- =^

,

.

^ ' X + 2 2x— 4

Ans. x' = -\- 2, x" = — 2.

What does the second member become when the first of these values

is substituted ? How do you explain the result.

18. Solve the equation, " =
.

X— o X— a

Ans. Both values infinite.

How are these results explained ?
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nx + a X + h
19. Solve the equation, — b nx— a

What do these values become when « = 1 ? "Why ? What, vyhcn

7/> a\

2x + 1 X + 2
20. Solve the equation, = ^-

* X— 2 Zx— 1

Ans. x'=z + V^^^, x"=— \/-^ir

Why are these results imaginary ?

21. Solve the equation, ax -\ =^ —„ a.
X x^— x

22. Solve the equation, 2x +

Ans.

2 8a;.

23. Solve the equation, ox -\ =

Ans. x' = + 2, x" = — 2.

27ic— 3 „

Ans. x' = + S, x" = — 3.

PROPERTIES OF INCOMPLETE EQUATIONS.

332. 1st. Every incomplete equation of the second degree has two

values, and but two, and these values are equal with contrary signs.

For, the general form of the equation is x^ =:zq or x^— q= 0. The

first member may be regarded as the difference of two squares, and can,

therefore, be placed under the form of (x— \/ q) (x + n/ q}- Hence,

the equation, x^= q, may be written (x— %/§') (^c + \/q)^^- Now
the product of two factors being equal to zero, the equation can be

satisfied by placing either factor equal to zero. Therefore, x— y/q=^Q,

and x -{• y/q= 0. From which, we get x= + y/q, and ar = — -Jq,

or, distinguishing the values by dashes, a;'= + >/ q, x" z=^— ^q.
Since there are but two factors, the equation can be satisfied in but two

ways. Hence there are but two values, and Ave sec that these are equal

with contrary signs.

By solving directly the equation, x^= q, we would obtain the same

results. But the process we have adopted is to be used hereafter for
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complete equations, and it is well to know that the properties of com-

plete equations are also those of incomplete equations.

2d. Every incomplete equation of the second degree can be decom-

posed into two binomial factors of the first degree with respect to .r

;

the first factor being the algebraic sum of x and the first value with its

sign changed, and the second factor being the arithmetical sum of a-

and the second value with its sign changed.

The factors have already been obtained, and are (x— V q), anJ

(x + %/(/); and we see that these correspond to the enunciation of the

second property. The product of these factors is zero. Hence, when

wc know the two values of an incomplete equation, we can always form

the incomplete equation itself which gave those values. We have only

to change the signs of the values, and connect them with x. We will

then have the binomial factors, and, placing their product equal to zero,

we will have the equation required. Thus, form the equation that

gives for x the two values, -f 2 and— 2. The two factors are (x— 2)

and (x + 2), and the equation is (x— 2) (a; -f 2)= 0, or x^— 4= 0.

The result can be verified by solving the equation, x'^— 4= 0. Or,

since in the equation, (x— 2) (x + 2) = 0, we have the product of two

factors equal to zero, the equation can be satisfied by placing either

factor equal to zero. Hence, x— 2 = and .r + 2 =: 0. And these

equations, when solved, give the values, + 2 and— 2.

EXAMPLES.

1. Find the equation that gives for x the two values, -f a^, and— a^.

Ans. x^— a' = 0.

2. Find the equation whose values arc + -/oi, and — y/ab.

Ans. x^— ai = 0.

3. Find the equation whose values are -f o — I, and -f h— a.

Ans. x' + 2ah— 1/— a^=0.

4. Form the equation whose values are -f y/m— a, and— ^m— a.

Ans. jp- -f a— m = 0.

5. Form the equation whose values are + ^fm — a — s/ in^— a^

and — \/ in— a -{- ^m^— a^.

Ans. x^— (m — a) — (m^— a^) -f 2^w— a ^vv'—a'= 0.

Verify this result by solving the equation.
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6. SolvG tho equation whose values are a— ^Z d^— m?, and— a

+ ^a?— mK Ans. x^— 2a?+m?+2a v/m^— a" z= ,

Verify this result by solving the equation.

7. Form the equation whose values are -f-
—

, and

_ ^iiv" + a"

8. Form the equation whose values are— , and

Ans. (m^— ?i^) cc'^= an^.

9. Form the equation whose values are w?— n^, and— rti^ -j- n^.

Ans. x^= m* — 2m^n^ + %*.

What do the values become when m = ?i ? "What, when m = ?

BINOMIAL EQUATIONS.

333. Any binomial equation of the n^^ degree can be solved as the

preceding equations. We have only to extract the h*"" root of both

members.

Let a;^ = 27; then, x =\/W= 3. Let x"" = q; then, x == ^~q.

If n be an even number, the radical must have the double sign, and

two values, at least, of the equation will be known. If n be an odd

number, only one value will be known. It will be demonstrated here-

after, that every equation of the ?i*'' degree has n values. The method

of finding the other values will then be explained.

Let a;" = a^ ; then, x = ±yd^ = ±\/ ^/^(^ = ±n/± a.

Then
, x' = +^ + a, x" = —^-\-a, x'" ^ + ^"-^a, xJ'" = —

v/— a.

In this example the four values of x have been determined, but it

is not often the case that they all can be found.

Let x^= «%• then, x = ± V*' = zfc^Y v^'t? = ± V± a, and

four of the six values are known.
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Let a;'2 = a%- then, x = ±'y^ = ±\J l/cc" = ±i/a, and only

two of the twelve values are known.

EXAMPLES.

1. Solve the equation, ^x*— 6az + oa^ = z— 2a.

Ans. x' — + ^z + a, x" = — ^z '\- a, x'" = + ^117(7+^,
x"" v/— (z + a).

2. Solve the equation, x* = 256. Ans. x' = + -i, x" = — 4.

3. Solve the equation, ^a^ + x^ + y/a}— x^ = ni^2.

Ans. a/ = + i/a*— {m?— a^f, x" = —i/a*— (m''—a^f.

4. Solve the equation, a;'" = 32.

Ans. x' = + ^% x" = — ^2^

5. Solve the equation, -^^-^ _: ^ =2^^--
s/m

Ans. x' = + j9Vm (2 — m), x"=—j^l/m (2 — m).

Qj Solve the equation, x* = 1.

Ans. x'=-\-l, x"=— l, x'" ± + v/^=T, ./""=— vZ-'^nr

Verify the preceding results by substituting them in the given

equations.

GENERAL PROBLEMS IN BINOMIAL EQUATIONS.

334. 1. The sum of two numbers is «, and the ratio of their squares

m : what are the numbers ?

Ans. X = r=r, X = :^
• 1 + v/m 1 — -v/"^

For, let X = one number ; then, a— x = the other, and, by the

x^
conditions, -, = in. Now, extract the square root of both mem-

(a— xy ' ^

x'
ziz y/m. Hence, •

, r= -\-^m, and
11 ^ a— X,

— ^/n. From the first equation, u^ ^= \- a-^m — x^ y/m,

a— X

or



288 EQUATIONS OF THE SECOND DEGREE.

—
, + a »/«i. ,, , _

x'(l -^ .y^n) =a yin, or x' zr= r=. l^rom the second equa-
1 H ^m

tion, we get x" r=— a y/m + x"^m, or x" =i z;^. Now, if

1 — y/m
m = \, tlic second value is infinite. How is this result to be inter-

preted ? By going back to the equation of the problem, we see that

x^
it becomes, under this hypothesis, -^ = 1 ; an equation which

can only be true when a z=. 0, or when x ^=— . The first supposition

contradicts the enunciation, the second is the value found for x'. The

second value can only exist when there is a contradiction to the state-

ment : it ought, then, to appear under the symbol of absurdity. We
may explain the result otherwise; thus: when m = 1, the equation in

x" becomes x"— x" =z— a, or •

j,
= + —^, or = -|

^,.

This equation is plainly absurd for any finite value of x".

The value, x" =— --, satisfies the equation of the problem, as it

manifestly ought to do. We have — = 1, or — — = 1,

IF

(a\ '
"'

(Oa— aY

or, -^[ = ^^^^^, or O'a'= 0' (Oa— af, or = 0.

2. The sum of two numbers is a, and the ratio of their fourth powers

is m. What are the numbers ?

,
a ijm „ a yjm

1 + V?u' 1— Xjm

3. Two numbers are to each other as m to «, m being greater than n,

and the ratio of their squares is equal to (.^ divided by the square of the

greater. What are the numbers ?

^. an „ , ,
ai^

Ans. First, ± , Second. ± —5-.

m ' vv

4. Two numbers are to each others as m to n, and the sum of their

fourth powers is equal to a". What are the numbers ?

Ans. First, ± :, Second, ± --
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5. Two numbers are to each other as ni to n, and the diflforeuco of

their fourth powers is O*. What are the numbers ?

A71S. iirst, it , Second,ym*— n* %/ «t*—,!••

What do these values become when m ~ n ? Why ? What when
m=0? Why?

6. The cube root of twice the square of a number is 2. What is

the number ?

Ans. Either -|- 2, or — 2.

7. The cube root of a times the square of a number is h. Wliat is

the number?

Ans. X'-Wl--\/l
What do these values become when a = ? What when h =0?
8. The square of a number multiplied by the first power of the same

number is equal to 64. What is the number ? Ans. 4.

9. A man put out a certain sum of money at G per cent, interest.

The product of the interest upon the money for G months by the interest

for 4 months was 600 dollars. What was the sum at interest ?
,

A71S. 81000.

10. A man put out a certain sum of money at 6 per cent, interest.

The product of the interests upon it for 3, 6 and 9 months was 820 i.

What was the sum ? Ans. 6100.

11. The successive quotients, of a quantity divided first by a, and

then by h, will, when multiplied together, give a product equal to mn.

What is the quantity ?

Ans. a;' = + ^ahmn, x" = — y/nhmn.

COMPLETE EQUATIONS OF THE SECOND DEGREE.

335. The most general form of such eciuations is, 1 — n=-r;
b m

clearing of fractions, we get, — amx^ + hex— Imn = hmr. Dividing

by the coefficient of x^,— am, we have x'— 1
= : and

am a a

by transposition, x^ == ^ \ Now, the second member
am a

25 T
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may be plainly represented by a single letter,— q, and tlie coefficient of

the second may be represented by—p. Hence, the given equation as-

sumes the form of x^—px = — q; in which the highest term of the

unknown quantity has a coefficient plus unity. Had the coefficient,

— - of a;^ in the original equation been affected with the positive sign, it

would have reduced to the form of x^ + 2^-^ — 5- ^^^ ^^^ coefficient

of x^ been positive, and that of x negative, the equation would have

assumed the form of x^—px ^ q. Had the last conditions been ful-

filled, and the prevailing sign in the second member at the same time

negative, the equation would have assumed the form of x^—px=— q.

And, since every change that may be made upon the signs of the

coefficients of x^ and x, and upon the signs of the known terms, will

eventually lead us to one of the preceding forms, we conclude that

every complete equation of the second degree may be placed under one

of the following forms :

x^ + px = q, First form,

a;2—jyx ^ -\-q, Second form,

x^ + pjx =— q, Third form,

x^—px ^=— q, Fourth form.

When a complete equation is given to be solved, it must first be placed

under one of these forms. To do this, clear it of fractions, if it con-

tain any, and then make the coefficient of the first term plus unity, if

not already so, by dividing by this coefficient. The resulting equation

will then be under one of the required forms. The form that the

resulting equation assumes will, of course, depend upon the prevailing

signs in the given equation.

x^ Ix
Reduce the equation, — ^ 8 = ^—

-4j to one of the four forms.

Clearing of fractions, we have cc^—2a;+12=— 6, or .r^

—

2x=—18.

Hence, the equation has assumed the fourth form.

Reduce the equation, — + o=— f to an equivalent equation,

which will appear under one of the four forms.

Multiplying both members by 20, the least common multiple of the

denominators, we will get 5x^— lOx -f 00=— 24. Now, divide by

-|- 5, to make the coefficient of x^ plus unity. Then, x^ — 2x + 12

24^__or-4f
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We see in this particular case, that we might have obtained the sam-e re-

sult by multiplying the original equation by 4. This -would have made the

coefficient of the first term unity, which is the main point to be attended

to ; then, by transposition, the equation would have become x^— 2x=
— 16|. And we see tha-t the equivalent equation is of the fourth form.

It frequently happens that it is impossible to make all the terms entire,

and the coefficient of the first term at the same time plus unity. But,

since this coefficient must always be plus unity, we derive the following

rale for reducing any equation to one of the proposed form.

RULE.

Multiplij both members of the equation by the reciprocal of the co-

efficient of the first term, and then transjxjse all the known terms to

the second member.

The multiplier in the equation, | o;^ — 2.r =: 4 is, + |. The multi-

plier in the equation,— | cc^— 2x = 4 is,— -^

.

The reason of the rale is obvious, and needs no explanation.

EXAMPLES.

1. Keduce the equation, | x^— J a; + G= 4, to one of the four forms.

Ans. X?—-=— 3.

2. Keduce the equation, — | a;^— \x + 6 = -j- 4, to one of the

four forms.
, x

Ans. x^+- = + ^.

3. Reduce the equation, ^'^ x"^ + lx=zl, to one of the four forms.

Ans. x^ -\- ^x = 25.

5

Ans. x^— bx = 25.

5. Reduce the equation,— f .r'^— J j' -f fi = + 4, to one of the four

forms. X
Ans. x^ + '- = o.

336. If the first member of the equation put under one of the four

forms is a perfect square, the solution can be as readily effected as in

the case of an incomplete equation. For, we will only have to extract
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tlic square root of botli mciubcrs, and then transfer the known term or

terms in tlie first member to the second member, and then the solution

will be complete. Suppose that the equation is a;^ + 2aa; + a^ =&.

Extract the root of both members, then a; + a = =b ^b. Hence,

x' = — a -\- -s/h, and a;" = — a— -Jh. We see that the equation

has two values, and that these are not numerically equal, as in the case

of incomplete equations.

Now if, by any artifice, we can make the first member a complete

.square, it is plain that there will be no difficulty in the solution of a

compl-ete equation of the second degree. Let us then assume the equa-

tion, x^ -\- "px = q, and examine what modification the equation must

undergo, in order that its first member may be made a perfect square.

The square of a binomial is composed of the square of the first term,

plus the double product of the first by the second, plus the square of

the second term. The square of a binomial is, therefore, a trinomial.

.ir^ + jjx must then be made a trinomial by the addition of some quan-

tity before the first member \Vill become a perfect square. What is the

quantity to be added ? Take the expression, (x + a)^= x^-\- 2ax -f- a'.

We see that the third term of the trinomial is the square of the second

term of the binomial in the first member ; and we sec that 2a,r, the

second term of the trinomial, when divided by 2x, twice the first term

of the binomial, gives a quotient, a, which is the second term of the

binomial. This quotient, squared, is the third term of the trinomial.

Now, suppose we only knew the first two terms of the trinomial, x^ and

2ax, and wished to ascertain what was the binomial, which, when

squared, would give these for the first two terms of its square. We
would know that the first term of the binomial must be x ; and, since 2ax,

the second term of the trinomial is twice this first term by the second

terra, it is plain that the second term can be found by dividing by 2a,', twice

the first term. Having found a, the second term of the binomial, we

have only to square it, and the third term of the trinomial will be

known.

Apply these principles to the expression, a;^ -f px, regarded as the

first two terms of a trinomial that is a complete square. It is plain

that X is the first term of the binomial, the first two terms of whose

square are x^ + ^«. The second term of the binomial can be found

by dividing j^x by 2x, twice the first term : the quotient, ~, is the

second term of the binomial, and its square, ^, is the required tliird
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term of the trimonial. If then ^ be added to x^ -\- V^, the first

member will be a perfect square. But, if we add ^ to the first mem-

ber, we must also add it to the second, eke the equality of the two

members will be destroyed. Hence, the equation, x^ -\- px =^ q, can

be changed into the equivalent equation, x- + px + x ~ 2 "^
jT"

in which the first member is a perfect square.

Now, extract the square root of both members,

X + ^ = ± \/y + q. Hence, x' = — ^ + ^/^ + q, and

Either of these values when substituted for x will satisfy the equation.

The first, when substituted, will give ( — ^"'"V/'T'^!?^"^

^ ("~f + \/f + '^) = *?' ""' ^-^ \/f' +1+J + 1-

'h^'sji + <i

Reducing the first member we have, q = q. Hence, the first value

satisfies the equation. The second, when substituted, gives

/f p^ p' //>'Py t + 2 + T "^ '^~ 2 ~^'V J + 'i = !?>
or

!? = q.

Hence, the second value also satisfies the equation.

We have taken an equation under the first form, but it is obvious

that the principles deduced are applicable to equations under either of

the three other forms. Hence, for the solution of a complete equation

of the second degree, we have this general

RULE.

Reduce the equation to one of the four forms, hy multiplying hath

members hy the reciprocal of the coefficient of the highest power of the

unknown quantity, and by transposing all the knoicn terms to the second

25*
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memher. Next, add the square of half the coefficient of tlie fir&t poiccr

of the unknmon quantity to loth memhers, and then extract the square

root of hoth memhers.

Finallij, separate the unhnown quantity from the knoion quantities

hy leaving it alone in the first memher.

A common error with beginners is, to complete the square without

observing whether the coefl&cient of the first term is plus unity. But

it will be seen that the rule requires the first step to be the making of

this coefiacient plus unity, if not already so.

EXAMPLES.

1. Solve the equation, — x^ + 16a; = 28.

Ans. x' = + 2, x" = + 14,

2. Solve the equation, x^— 4:X = — 4.

Ans. x' = + 2, x" = + 2.

3. Solve the equation, x^ + 4a; = — 4.

Ans. x' = — 2, x" = — 2.

It is generally best to reduce the terms under the radical to a common

denominator.

Take the equation, — ax^— cx= — m. This, when solved, gives

X = — -— d=\/ 1- T—0- The two terms under the radical can be
2« V a 4a''

reduced to a common denominator by multiplying the numerator and

denominator of the first by 4a, If m had been divisible by a, then a

would not appear in the denominator of the first term, and the multi-

plier then would have been 4a^. The single term, into which all the

known quantities in the second member have been collected after the

(Coefficient of x^ has been made plus unity, is called the ahsolute term.

In the preceding equation, — is the absolute term. Then, to reduce the

terms under the radical to the same denominator, we multiply numerator

and denominator of the absolute term by either 4 tim.es the coefficient

of the second power of x, or 4 times the square of this coefficient.

This rule is only applicable when the reduced term in the second

member was entire, previous to making the coefficient of x^ plus unity.
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4. Solve the equation, 2x^— Sx = 5.

Ans. x' = + 2J-, x" = — 1.

For, solving, we get, x = | ±^^ + J>^ = ^dtz v/|g + /g = | ±
1= -\-2h,ov-l.

5. Solve the equation, 2x^— Sx = 2.

Ans. x' = + 2, x" = — A-

For, solving, we get, x = | ± N/T+7g = | ± v/ -^"^ = |±

I = +2, or— *.

,. CI 1 -1 ,•
-^^ ^'^ "^ ^'*

o. bolve the equation, —, H = -— + —

.

wr c ?>!'' c

^i??s. x = + o, X = — a .

c

337. These few examples are given to show how complete equations

can be solved. But the solutions can be better understood when some

of the properties of these equations arc known.

First Projjcrf^.

Every complete equation of the second degree has two values, and

but two, for the unknown quantity.

For, resume the equation, x^ + px = q. Complete the square of

the first member, and we have x' -\- px + -^ = q + ^. Now, the
4 4

first member being a square, the second member may be represented by

a square also. Hence, x'^ -}- j^x -{-—-= ni^, or (x + j^Y — "^^ = ^•

Now, the first member being the diflerenee of two squares, may be re-

solved by the principle of the sum and difi"erence into two factors.

Then the equation, (x + pY— m^ = 0, will be changed into the equiva-

lent equation, (x -i- p -{- m) (x -{- p— m) = 0. And since, when the

product of two factors is equal to zero, the equation can be satisfied by
placing either factor equal to zero, we have, x + p -\- m = 0, and

x-\-p—m= 0. From which we get X = —p— m, iindx = —p + 7n ;

or, distinguishing the values by dashes, x' = —p— m, and x" =z —
p + m. Now, if we replaced m by its value, we would have the solu-
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tions previously obtained. We sec that there are two values nume-

rically unequal, and, since the equation, (x + p -\- m) (cc -f 7)— m) = 0,

contains but two factors, it can be satisfied in two ways, and only in two

ways. Hence, there are two, and only two, values for the unknown

quantity.

Sfcond Pmpcrty.

338. The first member of every equation of the second degree can be

decomposed into two factors of the first degree with respect to x^ the

first factor being the algebraic sum of x and the first value of x with

its sign changed ) and the second factor being the algebraic sum of x

and the second value with its sign changed. The second member of

the equation after this decomposition will be zero.

The factors have already been obtained, and are (a^ + p -f 7)1) and

[x, -\r p— ?«)• By comparing these factors with x' and x", we see

that Ar p -\- in is equal to — x', and that + p— «i is equal to — a;",

and these factors then can be changed into the equivalent, {x— cp')

and {x— a;") ; and the equation, {x \- p -\- m) (x. + j)— m) = 0, can

be changed into (x — x') {x— x") = 0.

339. This important property enables us to find the equation whose

values are known. We have only to change the sign of the first value,

and prefix -f a? to it, and the first factor will be known; and then to

change the sign of the second value, and prefix + x to it, and the

second factor will be known. The product of these factors placed

equal to zero is the equation required.

Find the equation, whose values are -f 2 and — 3. The first factor

must be (x— 2) ; the second factor must be a; + 3. Hence, (x— 2)

(x+3)= 0, is the equation required. Expanding the first member, we

have x^ -{- X — 6 = 0, or a;^ -f a; = 6. Completing the square, and

solving, we get a- = — J db ^Q + I =— i rt v/-^' = — J d= | =
-f I, or + 2, or — | = — 3. Hence, the process is verified. But

the verification might have been made more readily, thus : the equation

(x — 2) (.r 4- 3)= 0, can be satisfied by placing either factor equal to

zero. Hence, x— 2 = 0, and a; + 3 = 0. These equations give the

preceding values, + 2 and — 3.

A few examples will make the beginner more familiar with the second

property.
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EXAMPLES.

1. Form the equation whose values are both — 2.

Ans. (x + 2) Qc + 2) =r 0, or a-^ 4. 4.^ a. 4= 0.

2. Form the equation whose values are (f + ^h, and a — ^/i.

Ans. (x— a— ^h) (x— a+ ^V)= 0, or x^— 2«a- = h— a^.

3. Form the equation whose values are — 2m + y/n + Ani^, and

- 2w? — y/7i + 4ml Ans. x^ + Amx= n.

4. Form the equation whose values are a — n+ s/m— 2an + n'^,

and a — n —^m — 2an + ?i^.

Ans. x^ — 2 (a — «) ./; = m — a^.

Verify these results by solving the equations.

340. The second property of complete equations sometimes enables us

to solve an equation very readily. For, whenever the factors of an equa-

tion are apparent, we need not solve the eciuation itself, but only those

factors separately placed equal to zero. Thus, take the equation

01? + Ix = ax. By transposition we get, x^ \- hx — ax = 0. We
see that a; is a common factor to the first member, and the equation

may be written x (x-\- h— a) = 0. And since, when the product of

two factors is equal to zero, the equation can be satisfied by placing

either equal to zero, we have a; = 0, and x-\- h— a= 0. Hence, the

two values are 0, and a— h. The general equation, x"^ -{ hx— ax

=z 0, slioios, furthermore, that when the unknown quantity enters into all

the terms of the first member of an equation, ichose second member is

zero, one value of the iinknown quantit}/ must nlwai/s be zero.

Take, as a further illustration of the use of the second property, the

equation, ax^— bx^ -[-ax— bx = bx— ax. This equation can be

written (a— b) x^ +2 (a— b) x = 0, ot x { (a — b) x + 2 (a —b) )

= 0, or X (a— b) (x + 2) = 0, or x(a— b) = 0, and x + 2 = 0.

Hence, x' = 0, and x" = — 2.

Again, x^— ax -\- x— a = 0, may be written x (x— a) -f '" — (''

= 0, or (x— rt) (x -f- 1) = 0. Hence, x' = a, and x" = — 1.

We have seen that the first two properties of complete equations are

also properties of incomplete equations. The remaining properties are

also, as we shall see, common to both classes of equations.
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Tliird Properti/.

341. The algebraic sum of the values of every complete equation of

the second degree is equal to the coefficient of the first power of the

unknown quantity, with its sign changed.

For the equation, si:^ + px = q, when solved, gave the two values,

^' = -f + \/^ + <1

^' = -f-\/^+-
Adding these equations, member by member, we get x' + x" — —p,

as enunciated.

The third property of complete equations is also a property of incom-

plete equations. For, an incomplete equation of the form, x^ = q, may
be written, x^ ~\-0x = q. The two values of this equation, solved

either as a complete or as an incomplete equation, are, cc' = -f ^q^ and

x" = — ^q. The sum of these values, x' + x", is plainly zero,

which is the coefficient of the first power of x. An incomplete equa-

tion then may be regarded as a complete equation, whose two values

are numerically equal, but affected with contrary signs.

Fourth Pfop)erty.

342. The product of the values in every complete equation of the

form, x^ + P^ = (J^
is equal to the second member or absolute term

with its sign changed.

For these values are cc' = —
"o" + \/ T"^ S'

andx" = —^— S^/^+q.

and their product, x'x" = -{-

^ U- -\- q\ = I-

This property belongs also to incomplete equations, for the two values

of the equation, x^= q, are x' = + y/q and x" = — .^q, and their

product, x'x" = — q.
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"We will see, hereafter, that the third and fourth properties belong to

equations of every degi-ee, and that the first and second, with some

modifications, are also properties of all equations.

EXAMPLES.

1. What is the product, and what the sum, of the values in the

equation, x^ + 4x = — 4. Aiis. x'x" = + 4, x' + x" = — 4.

2. What the product, and sum, in the equation, x^ + x = 1.

Ans. x'x" = — 1, x' + x" = — 1.

3. What the product, and sum, in the equation, x^—px =— tj.

Ans. x'x" = -\- q, x' + x" = + p.

Fifth Property.

343. The value of x, in every complete equation of the second

degree, is half the coeflScient of the first power of x, plus or minus the

square root of the square of half this coefficient increased by the

absolute term.

For the equation, x^ + px = tp when solved, gives x =— ^ ±

\ /
-J + q^ which agrees with the statement.

It is obvious that this is also a property of incomplete equations,

since, for such equations, ;? = 0.

We have shown the foregoing properties by operating upon an equa-

tion of the first form, but, since the demonstrations have in no way been

dependent upon the signs of p and q, it is obvious that equations under

the three other forms enjoy the same properties.

The fifth property enables us to solve an equation directly, without

completing the square in the first member j but it is well to require

beginners to complete the square, until familiar with the principles.
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GENERAL EXAMPLES.

1. Solve the equation, ax^ + ex = ma.

Ans.
c / f2 „ c / C"

2« V 4a^ 2rt V 4a2

or, .r = -^ — , x" = ^—T .

2a la

2. Solve the equation, Ix^— Ux = + 280.

Ans. a:' = 1 + v^ll^ ^" = 1 — n/'IT-

3. Solve the equation, nx^— mx = nm.

^ ,
111 + y/m^ + 4n^m ,, m y/m^ + 4«^?w

^9(S. X= \- -r , if == .

2n 2n

4. Solve the equation, ax^— hx = mx

A7

5. Solve the equation, 4.t^— 5.r = 7a-

J.ns. 0^' = 0, a; = .

Ans. x' = 0, a" = 3.

6. Solve the equation, nx^— mx = 6x.

Ans. x' = 0, .c' = — .

How might the answers to 5 and 6 be deduced directly from the

answer to 4.

7. Solve the equation, — x^—px =^ + §'•

8. Solve the equation, x^ -\- ^x— # = 0.

Ans. ^' ~ + 3j x" = — 3.

9. Solve the equation, 4.^' + lOx— 6 = 0.

Ans. a:' = + ^, x" = — 3.

10. Solve the equation, x^— | a:— # = 0.
'

Ans. x' = + 3, x" = — A.
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11. Solve the equation, x^ + x -\- -:^\ = 0.

Ans. ;

12. Solve the equation, x^ — x + -f^
= 0.

Ans. x' = + |, x" = + |.

13. Solve the equation, 16:/;^— 16x + 3 = 0.

Ans. x' = + I, x" = + f

14. Solve the equation, x^— ax + ah = + hx.

Ans. x' = + a, x" = + h.

15. Solve the equation, x^ + ax + ab = — bx.

Alls, x' = — a, x" = — b.

16. Solve the equation, mx' -\ m = -——.

i , ^ n ^
Ans. X = -J-, X = .

a

^_ _, , , . „ vibx max
li. Solve the equation, mx' vi = ;—

.

' « b

4 , ^ ,i
^

Ans. X = + —, X = ^.
a b

__ „ , . . , rt.r mx px
18. Solve the equation, x^ -. = — ex— ^—.

b n q

Ans. x' = 0, x" = ---{ c— —

.

b n q

-„ r, , , . , ,
ax mx px

19. Solve the equation, « + -y- + — = ex + ~.
'

b H q

A inn pa m
Ans. .r' = 0, x" = c + =^

.

q b n

20. Solve the equation, x^ + mx + ex + \/n x-{- m\r = 0.

Ans. x' = 0, cc" = — m— c— y/n— «t^.

21. Solve the equation, x^— mx— ex— ^n x— m^x= 0.

Ans. x'= 0, x" = m + c + ^n + m^.

These equations show that, when the sign of the coefficient of x has

been changed, and the other terms left unaltered, the values will be

numerically the same, but affected with contrary signs. They show

26
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also tliat, when all the terms after x^ are negative, the second member

being zero, the values will be both positive ; and when the terms are

•all positive, the second member being zero, the values will be both

negative.

22. Solve the equation, mx^ + px = — q.

Ans. x' = —P+ ^p'— Amq ^„ ^ —p—^p^— 4mq

"What will these values become when p^ = Amq ? What, when

/ < ^mq ?

23. Solve the equation, 4:?^ ^ 24a- = — 36.

Ans. x' = — S, x" = — 3.

24. Solve the equation, 4x^— 24:r = — 36.

Ans. a-' = + 3, x" = + 3.

25. Solve the equation, 4x^— 24.r = —40.

Ans. .x' = + 3 + ^—1, x"= + 3 — ^— 1.

The following important consequences flow fi-om the last four ex-

amples.

Whenever the square of the coefficient of x is not greater than four

times the product of the coefficient of x"^ into the absolute term, the

values will be imaginary, if the sign of the absolute term is negative.

And, whenever the square of the coefficient of x is equal to this nega-

tive product, the two values of x will become identical.

344. Some equations may be treated either as complete or in-

complete.

x^
1. Solve the equation, -, = n.

(a — xj

Ans. X = ^, X = .

I + ^n \— s/n

For, expanding the denominator and clearing of fractions, we have,

a-2 — n (a^ — 2ax + x^), or (1 — n) x^ + 2anx = na^, or x^ +
2an na^ ^^

,
an

. / ncv^ 'a^
:- = -z . Hence, :r =— —- h \ / ^ H =1— H 1 — n \ — n V l—n^(l— ',if— an 4- ^na? (1

—

n) + ahi^ —an -f a^n _ a^/n (1 — ,yn)

1 — n 1

—

n 1 — n
'

Now, multiply numerator and denominator by 1 -f ^/n, and we have,
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a^n(l— n)^ = ''^"
. In the same way, x" cau be shown

(1— ?0(l + \/w) 1+ n/"

equal to =. These values for x' and x" are identical with
^ 1— v/n

those before obtained, when the equation, ^ = », was treated as
^

(rt — x)2

an incomplete equation.

x^
2. Solve the equation, :,

= m^, as a complete equation.
(rt + xy

, ,
am ,,

—am
Ans. X = ;.

—

, x =
X

Solve the equation, :=- = q, as a complete equation

(x— ^pf

Ans. x' =

1 -f m' 1 4- m

a complete equation.

s/pq ,, s/pq

^q— 1 y/q + l

345. In the foregoing examples, the unknown quantity has been

freed from radicals. Whenever it is connected with radicals, it must

be freed from them by the preceding rules., and then the process will

be the same as in the examples already given.

1. Solve the equation, y/mx^+ nx = y/p

n 4- v/?i^ + 4m» „ n — ^n^ + 4mp
^"^- •'^

= ^ ' ' = 2^1
•

2. Solve the equation, V^V + nx = p, as an equation of the

second degree. .
, _ j^ n

—P
~ m + ?i' m — n

3. Solve the equation, ^mx^ + nx = p, as an equation of the

second degree. , , P tr V
Ans. x — —== ,x = =r .

•Jm -{- n y/m "

4. Solve the equation, ^If + ^ "^ "^ =Sh'^r+x Vl+.r
A7}s. a:' = + 8, x"=—^.

5. Solve the equation, ( —=. = m.
« + '-« ^/a + x

Aus. X ^^ . X ^^^ ^r

What will these values become when m = 2? What, when m <^ 9?
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6. Solve the equation, -5-— h — " = -•

Ans. x' = — 2, a;"

^ , , • n/1 + .c 1 + j-

7. Solve the equation, -r;—;——1 = 1

J.JIS. a;'

l-\-x ^1 +
—3+v/— 3 „ — 3 — v^^ITs

a; + a + c
8. Solve the equation, = = 1.

,/2cx -\- 4ac

Ans. x'=— a + ^/2ac— c^, x"=— a— v/2ac— c\

"What do these values become when c^= 2ac ? What, when c'^2aP

^ -|_ 2 + 4
9. Solve the equation, — =z 1.

s/Sx +32
Ans. x'

10. Solve the equation
+ 2 + 5

v/10^ + 40

^/!s. x' = — 2 + ^/^^^, x" v/— 5.

11. Solve the equation, -J x^ -\- hx =^ y/ ax -{ y/bx.

Ans. x! = 0, a;" = a + 2 s/ ah.

Verify all the preceding results.

DISCUSSION OF COMPLETE EQUATIONS OF THE SECOND
DEGREE.

346. The four forms of these equations are

3?—px= q,

X? + px=— 2',

0?— px z=— q,

and the corresponding values.

First form.
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='=f+\/^+^'
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By extracting tlie square root of "^ + f?
approximatively in the

vaJucs of tlic second form, we would see that the first value was positive

and the second negative, and that the second was numerically greater

than the first. We have anticipated this, from what has been said

before, as to the interchange of position and the change of sign between

the values of the first and second form.

In the third form both values are negative, because — ^ is ^

\
If
/ -J

— q. The second value is numerically greater than the first.

In the fourth form both values are positive, and the first is numeri-

cally greater than the second. These results might have been antici-

pated from our knowledge of those in the third form.

347. The discussion of the signs of the values in the four forms

may be made otherwise, thus : we know, from the fourth property of

equations of the second degree, that th.e product of the values in the

first form must be equal to — q. Hence, the values must have con-

trary signs. And we know, from the third property, that the sum must

be equal to — p. Hence, the negative value is the greater. For,

when we add a negative and positive quantity together, and their sum

is negative, we know that the negative quantity is greater than the

positive.

For the second form, the product of the values is equal to — q.

Hence, the values have difi'erent signs. Their product is equal to 4- p.

Hence, the positive value is greater than the negative.

For the third form, the product of the values is equal to -|- q. Hence,

the values are both positive, or both negative. But their sum is equal

to

—

p. Hence, they are both negative. "We cannot decide from this,

however, which is the greater, the first or second value.

For the fourth form, the product of the values is equal to -\- q.

Hence, the values must have like signs, and must be both positive, or

both negative. But their sum is positive, being equal to -j- p ; hence,

they are both positive. We cannot decide from this, however, which is

the greater, the first or the second value.
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IRRATIONAL, IMAGINARY, AND EQUAL VALUES.

348. The values, in all tlie forms, will be irrational whenever the

root of the radical cannot be extracted exactly. In that case, the ap-

proximate value of the radical can be determined to within a vulgar or

decimal fraction, and then the approximate values of the unknown

quantity will be known.

There can be no imaginary values in the first two forms, because

the quantities under the radical are affected with positive signs. "When-

ever, then, the absolute term of an equation is positive, we know, cer-

tainly, that there are no imaginary values in the equation.

The third and fourth forms contain imaginary values, only when q is

f? .

^ ^. For, in that case only, is the prevailing sign under the radical

negative. Whenever, then, an equation is put under the third or fourth

form (the unknown quantity being freed from radicals, and the coeflS-

cient of x^ being made plus unity), we can readily tell whether there are

imaginary values. "We have only to square half the coefficient of the

first power of x, and compare the result with the absolute term.

The equations, x^ -|- lOx = — 30, and a? — lOx = — 30, both

contain imaginary values, because (5)* <^ 30. Imaginary values, being

always similar in form, are said to enter the equation in pairs.

Since the two values of each of the four forms differ only by the

radical, it is obvious that the disappearance of the radical will cause

these values to become identical. But, the radical cannot be made to

vanish in the first and second forms, because the quantities under the

sign are positive. It will vanish, however, in the third and fourth

forms, whenever ^=zq. The values of the third form will then both

become

—

i^, and of the fourth form + ^. The equality of the

values, in the third and fourth forms, differs from the equality of the

values of incomplete equations. In the latter, it is equality only in a

numerical sense; in the third and fourth forms, absolute equality.

If we substitute ^ for q in the third and fourth forms, the equations

will become x^ -}- px = — -^, and x^—px =— ^, or, by transposi-

tion , x^ + px + ^ = 0, and x^—px + ^ =
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The first member of one equation is the square of (x + ^), and of

the other (x— ^). Hence, when there are equal values in the third

and fourth forms, the first members of those equations will be perfect

squares, provided the second members are zero.

The following are illustrations : x^ + Gx =— 9, and cc^— 6x =
— 9; x^ + Sx = —lQ,andx^— Sx =— lQ.

SUPPOSITIONS MADE UPON THE CONSTANTS.

349. Known terms are frequently called constants, and unknown

terms, variables. In the equation, x^ -\- px = q, p and q are the con-

stants, and x the variable.

Let us make the constant q — o, in the four forms. By going back

to the solved equations, we see that the values will become

^" _ p p
2""

2
~
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We have gotten the foregoing series of values by making (j' = iu

the solved equations. Ought we not to get the same results by opera-

ting upon the given equations themselves ? When 3 = 0, the first

and third forms become x^ -{- px = 0, ov x (x -{- p) :^ ; an equation

which can be satisfied by placing either factor equal to zero. Hence,

X = 0, and X + p = ; or, a;' = 0, and x" = — p ; the same as

before obtained. The second and fourth forms become, when q= ^,

x^—2)x = 0, or X (x—p) = 0. Hence, x" = 0, and x' =z + p, as

before.

When 2> = 0, we have this series of values :

c' = -\-\/q, x" =z— v/gr, in the first and third forms.

x' = 4-v/— 'j>
•^" =—\/— 'J,

in the second and fourth forms.

These results can be obtained directly from the equations ; for the

first and second become x^ = q, and the third and fourth, x^ = — q.

These two equations will plainly give the four preceding values.

When p = 0, and q = 0, the system of values reduces to x'= + 0,

x" = + 0, in each of the forms. This ought to be so ; for, in that

case, the four equations reduce to the same, x^= 0.

The solutions of the four equations give formulas which can be ap-

plied to particular examples. Thus, the values of the first form are

Let it be-'=-f + \/f + q, and a^" = -J^-syj^ +

required, now, to apply these results as formulas to find the values of

the equation, x^ + x = 2. Then, jj = 1, and q = 2. Hence, x' z=

— h + v/i- + 2= —^.^3^1. And x" = —i — ^i-^2 =—
k — #=— 2.

We have used as formulas the values x' and x", belonging to the

first form, because the equation, x^ + x = 2,\s of that form. And, of

course, we must always apply as formulas the values found in the form

to which the given equation belongs.

EXPLANATION OF LAIAGINARY VALUES.

350. We have seen that the values of the third and fourth forms be-

come imaginary when q was made greater than ^. It remains to ex-

plain the cause of the imaginary results, and to ascertain what they mean.

In the third form, the product of the values is equal to + q, and

their sum equal to —p. The values, then, are both negative; and
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we liave previously seen that tliey were unequal wlicu ^ was unequal

to q. If tlicy were equal, caeli must be — ^. Let x represent the

execss of the greater over — ^. Then the value which is numerically

the greater will be represented by — ( {y + x\, and the smaller nu-

merically will be represented by — ("^ x\. Their product will

be
^^

x^. Now, it is evident that this product will be the greatest

possible, when x = 0. This condition makes the two values equal, and

makes their greatest product ^ . But q represents their product, and

it, therefore, can never be greater than -^. Hence, when we make
4

-7- ^ <?, we impose an impossible condition. An imaginary solution,

then, indicates an impossible condition.

Ought not the equation to point out an absurdity when an impossi-

ble condition is imposed ? When the square is completed in the third

form, the equation \s, x^ -\- px -\ ^ = —
q, ox (x -\- ^\ ==j— q.

p-
Now, when q"^ ^, the second member is essentially negative, whilst

the first, being a square, is essentially positive. We then have a nega-

tive quantity equal to a positive quantity, which is absurd. A careful

inspection, then, of the equation which j^roduces imaginarij values loill

show an ahsurdity.

We have examined only the third form, but the preceding conse-

quences may be readily deduced by an examination of the fourth form.

The following problem will illustrate more fully the subject of ima-

ginary values.

Required to divide the number 10 into two parts ; such, that their

product will be equal to 30.

Let X be one of the parts, then 10 — x will be the other, and, from

the conditions we get x (10 — a;) = 30, or — x^ -\- l^x = 30. Mul-

tiplying both members by minus unity, we get x^— lOx = — 80, and,

completing the square, x^— 10a; -f 25 = — 5. Hence, x' = 5 -f

^/— 5, and x" = 5 s/^^
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The values are imaginary, as they ought to be ; for the greatest pro-

duct that we can form of two numbers, whose sum is 10, is 25.

Hence, we have imposed an impossible condition, and the imaginary

values point out this impossibility. The equation, x^— lOx -|- 25 =
— 5, may be written (x— 5)- = — 5 ; that is, a positive quantity

equal to a negative one, which is absurd. The imaginary values will,

however, satisfy the given equation, as they ought to do, since they

have been derived from it.

EXPLANATION OF NEGATIVE SOLUTIONS.

351. Required to find a number whose square, augmented by three

times the number, and also by 4, shall be equal to 2.

The equation of the problem is a;'^ + 3x + 4 = 2.

This equation, plainly, cannot be satisfied in an arithmetical sense

;

for 4 is already greater than 2, and must be still greater when aug-

mented by y^ and 3x. Solving the equation, we get x' ^— 1, and

:c"=— 2.

These negative values satisfy the equation, but do not fulfil the con-

ditions of the enunciation. For, x being negative, the equation will

become x-— 3a; -t- 4 = 2. The true enunciation of the problem, then,

is : Required to find a number, whose square, diminished by three times

the number, and that remainder increased by 4 will give a result equal

to 2. The equation of this problem, when solved, will give the two

positive values, 1 and 2.

Negative values then, in equations of the second as well as of the

first degree, satisfy the equation of the problem, but do not fulfil the

enunciated conditions ; and, since negative quantities indicate a change

of direction or character, those negative values point out the change

that must take place in the enunciation, in order that its conditions

may be complied with.

GENERAL PROBLEMS INVOLVING COMPLETE AND INCOM-
PLETE EQUATIONS OF THE SECOND DEGREE.

352. 1. Required to divide the number n into two parts, the product

of which shall be equal to m.

Ans. x' =r 2 7i, + v^i?r— m, x" = in— y/i)!"— in.

What will these values become when m =W ? What, when

m > In"- ? Why ?
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2. Required to divide the number 10 into two sucli parts that their

product shall be equal to 25. Ans. x' = 5, x"= 5.

Is the disappearance of the radical always connected with maximum
values ?

3. Required to divide the number 10 into two such parts that their

product shall be equal to 2G.

Ans. x' = b -\- >/— 1, x" = 5— V— 1.

Why are these values imaginary ? Verify them by substitution in

the equation of the problem.

4. The sum of two numbers is a, and the sum of their squares is h,

what are the numbers ?

, a + ^-Ih— a^ „ a— ^2b— a^
A7IS. X z=: -: , X = ^

.

When do these values become imaginary ? when equal ? What is

the least value that the sum of the squares can have ?

5. The sum of two numbers is 10, and the sum of their squares is

52, what are the numbers ? Aris. x'= G, x"= 4.

G. The sum of two numbers is 10, and the sum of their squares is

50, what are the numbers ? Ans. x' r= 5, cc" := 5.

7. The sum of two numbers is 10, and the sum of their squares is

40, what are the numbers ?

Ans. x' = 5 + J^^, if" r= 5 — -J— 5.

How may the values, in the last three examples, be deduced directly

from the general values in example 4 ?

8. A Yankee pedlar bought a certain number of clocks, which he

sold again for m dollars. His gain per cent, on his investment was

expressed by the number of dollars in it. How much did he pay for

the clocks ?

Ans. a;' = — 50 + v/(25 + m)100, a;" = — 50— V(25 + m)100.

9. Same problem as the last, except that the pedlar sold his clocks

for 375 dollars, instead of m dollars.

Ans. x' = 150, x" = — 250.

What is the meaning of the negative value?
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10. A number of partners in business owe a debt of m dollars, but,

in consequence of the failure of one of their number, each of the solvent

partners has to pay n dollars more than his proper proportion of the

debt. How many partners were there.

A -' — V n „ _ V n

11. Same problem as last, except that the debt was 728 dollars, and

that the increased portion of the solvent partners was 60 j dollars.

Ans. x' = 4, x" z= — 3.

The negative value is readily explained. An examination of the

equation of the problem, after — x has taken the place of + x, wDl

show that there have been two changes of condition, and the correspond-

ing enunciation will be :
" Several partners in trade owed a debt of 728

dollars, and, by the accession of another partner to share the debt with

them, their individual liability was diminished by GOf ; required the

number of partners." These changes in the enunciation give -f- 3 for

the number of partners, and the result can be verified. For, the share

of each in the debt is, 242 f dollars before a new partner was added to

the firm, and but 182 dollars afterwards. And, in general, for problems

involving equations of the second degree, there must be two changes

in the enunciation to convert a negative into a positive solution.

12. The difference between the cube and the square of a number is

equal to twice the number. Required the number.

Ans. x' = -\- 2, x"^— 1.

13. Required to .divide a quantity, a, into (wo such parts, that the

greater part shall be a mean proportional between the whole quantity

and the smaller part. What are the two parts ?

Am. Greater part, either
, or —^—^— ; and lesser

part, either |a— la ^5, or -S« + la \/b.

Both values will satisfy the enunciation, in one sense ; for, a(%a—

Because, by performing the indicated operations, we have for the first

27
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((2 ^2 g^2
value, 2a-— .UV^ = ^ — -5- v/5 +— r= -Ja" — ^"V"^J and, for

tlie second value, §a« + Ws/^=^ -\- W^b + -j- = 2"' + iaVST

The second value, however, does not satisfy the conditions of the

problem, understood in a literal sense, for the greater part,

—v/^j is less than the corresponding smaller part, %a + -^\/~^, and

this corresponding part is greater than the whole quantity, a. The

explanation of the negative solution is simple, when we return to the

equation of the problem, x^ = a (a— x). When x is negative, this

equation becomes, x^ = a(a -{• x), and the corresponding enunciation

ought to be required to find a number, which shall be a mean between

the whole quantity, a, and the sum of a and this number.

The given quantity, a, might have been represented by a straight line,

-f J-,
and the problem then would have

been to find a part, BC, which should be a mean between the whole, BA,
and the part, AC, left after BC was taken from it. Now, when the ex-

pression for BC became negative in the solution of the problem, it in-

dicated that BC must be laid oif on the left of the point B, because

this distance was laid off on the right of B, when its expression was

positive. The diagram becomes -,

and AC is greater than AB. This agrees with the second value of AC,

3 a— a + 7^ v/^ which is greater than a or AB. The negative solu-

tion here indicates then a change of direction, and the equation being

of the second degree, there are two corresponding changes of condition.

The first is expressed by the unknown distance being sought upon the

prolongation of AB, instead of upon AB itself; the second is expressed

by the unknown distance being a mean between AB, and A'B j'lus BC,

instead of between AB and AB minus BC.

The explanation of a negative solution need never be difiicult; we

have only to change + x into — a; in the equation of the problem, and^

then examine and see what the resulting equation means.

Some of the following problems will involve one of the four methods

of elimination. Whenever the equations between which the elimina-
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tion is to be effected is of a higher degree than the first, the method of

elimination by the greatest common divisor ought to be employed.

14. Find two numbers whose sum and product are both equal to a.

. , a + ^o?— 4a ,, a — ^/a^— 4«
Ans. X = :; , X =

,;^
,

, a— v/a^— 4a ^/a-— 4a + a
y = 2— '^

""—2
•

When will the two numbers be equal ? "When imaginary ?

15. Find two numbers whose sum and product shall be equal to 4.

Ans. 2 and 2.

16. Find two numbers whose sum and product shall be equal to 2.

Ans. x' = 1 + y/—l, x" =1 — >/^^^, y' = l — y/'-^, xf' =
1 + ^/^=^.

17. Find two numbers whose sum and product shall be both equal

to 5.

, 5 + v/5" ,, 5 — ^o~ , 5 — v^o" ,, 5 + Jb
Ans. x' = ^ >

* = 2 ' ^
^ 2 ' ^ ^ 2— "

Do the values in problems 14, 16 and 17, indicate that there are two

distinct sets of numbers, or that the second set is the same as the first,

differing only in the position of the numbers.

18. Two capitalists, A and B, invested different sums in trade. A
invested half as much as B, and kept his money in trade 6 months,

and gained one-twentieth of his investment. B kept double the amount

that A had, in trade for 9 months, and gained §100 more than A.

Supposing that their respective gains were proportional to their re-

spective capitals and the periods of investment, what were their

capitals ? Ans. A's 01000, B's 82000.

Why was the second value of x rejected ? What was the gain per

cent of A and B?

19. The difference between two numbers is a, and the difference be-

tween their cubes is h ; what are the numbers ?

Ans•" = 2-+ \/-T2^-^ =Y-VT2^'
^=-2- + \/-T2^'^ ==-Y-\/-l2^-

When will x" and y" be real, but negative ?
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AVhat do the negative values satisfy ? When will the two values of

X be equal ? How will the two values of y be in that case ? When
will the solutions be indeterminate? How many conditions must be

imposed ?

20. The difference of two numbers is 2, and the difference of their

cubes 152 ; what are the numbers ?

Ans. First number, + 6, or — 4 ; second number, + 4, or— 6.

How are the negative values explained ?

21. The difference of two numbers is 4, and the difference of their

cubes 16; what are the numbers?

Ans. First number, + 2 ; second number, — 2.

22. The diffcrenee of two numbers is 4, and the difference of their

cubes 15 ; what are the numbers ?

-^W^
23. The difference of two numbers is zero, and the difference of

their cubes zero ; what are the numbers ?

A71S. x' and x", both = -—, and i/' and ^", also both = -—

.

24. The year in which the translation began of what is called King

James' Bible, is expressed by four digits. The product of the first,

second and fourth, is 42 ; the fourth is one greater than the second,

and the sum and difference of the first and third are both equal to one.

Required the year. Ans. 1607.

25. The year in which Decatur published his official letter from New
London, stating that the traitors of New England burned blue lights

on both points of the harbour to give notice to the British of his at-

tempt to go to sea, is expressed by four digits. The sum of the first

and fourth is equal to half the second ; the first and third are equal to

each other; the sum of the first and second is equal to three times the

fourth, and the product of the first and second is equal to 8. Ee-

quired the year. Ans. 1813.

26. The year in which the Governors of Massachusetts and Connec-

ticut sent treasonable messages to their respective Legislatures, is ex-

pressed by four digits. The square root of the sum of the first and
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second is equal to 3 ; the square root of the product of the second and

fourth is equal to 4 ; the first is equal to the third, and is one-half of

the fourth. Required the year. Ans. 1812.

27. A gentleman puts out a certain capital at an interest of 5 per

cent. ; the product of the interest for 12 mouths by the interest for one

month, is just one fourth of the principal. What is the capital ?

Ans. a/ = 0, x" = $1200.

28. Some of the New England States were fully, and some partially,

represented in the Hartford Convention, which, in the year 1814, gave

aid and comfort to the British during the progress of the war. If 4 be

added to the number of States fully and partially represented, and the

square root of the sum be taken, the result will be the number of States

fully represented; but if 11 be added to the sum of the States fully and

partially represented, and the square root of the sum be taken, the

result will be equal to the square root of 8 times the number of States

partially represented. Required the number of States fully and

partially represented.

Ans. Three fully represented ; two partially represented.

29. The sum of two numbers is a, the sum of their squares h, and

the sum of their cubes c. What arc the numbers ?

A71S. x' ^+
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33. Two travellers started at the same time from two cities, C and

W, and travelled toward each other. They found, on meeting, that the

traveller from C had travelled 150 miles more than the other traveller,

and that by continuing at the same rate, he could reach W in five days;

whereas, it would take the traveller from W twenty days from the time

of meeting to reach C. Required the distance between W and C, the

rate of travel per day of the two travellers, and the time that had

elapsed before their meeting.

Ans. Distance between W and C, 450 miles; the rates, 30 and 15

miles per day; the time elapsed before meeting, 10 days.

34. The sum of three numbers is 15, the sum of their squares 93,

and the third is half the sum of the first and second. What are the

numbers ? Ans. 8, 2 and 5.

35. A man bought a tract of land for 811 per acre, and sold it again

at a less price, his loss per cent, on the sale being expressed by the price

per acre which he received. What did he sell the land for ?

Ans. 10 dollars per acre.

36. In the year 1G37, all the Pequod Indians that survived the

slaughter on the Mystic River were either banished from Connecticut,

or sold into slavery. The square root of twice the number of survivors

is equal to jLth that number. What was the number ? Ans. 200.

37. A. Southern Planter bought m acres of cultivated, and as many

of uncultivated, land. He got b more acres of uncultivated than of

cultivated land per dollar, and the whole cost of the cultivated exceeded

that of the uncultivated by c dollars. How much did he pay per acre

for each kind of land ?

1

Ans. x' = -—^ , 1 . / i (4m + be) .

1

-i>
a /b (4m -f be ) for cultivated land

; y =

^ _j. . / b (im + be) ,
y" = '!__ y^ ./b (4m + be),

for uncultivated land.

38. A Southern Planter purchased 100 acres of cultivated, and 100

acres of uncultivated land, the former costing him $500 more than the
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latter ; the smaller cost of the latter resulted from his getting for every

dollar y'^th of an acre more of the uncultivated land than of the cultivated.

What was the cost per acre of the cultivated and uncultivated land.

Ans. Former, $10 per acre; latter, $5 per acre.

Verification. 100 acres at $10 per acre will cost SIOOO, and 100 acres

at $5 will cost $500. A dollar will buy ^^ih of an acre of the culti-

vated, and ith of an acre of the uncultivated land ; and the difference

between ith and y^th is jgth. So, a dollar will buy -jjjih of an acre

more of the uncultivated than of the cultivated land.

.39. In the year 1853, a number of persons in New England and

New York, were sent to lunatic asylums in consequence of the Spiritual

Eapping delusion. If 14 be added to the number of those who became

insane, and the square root of the sum be taken, the root will be less

than the number by 42. Required the number of victims.

A71S. 50.

Why is the second value of x rejected ?

40. Two farmers, A and B, invest each a certain amount in the

Central Railroad of North Carolina. After a time, A sells his stock

for $150, and gains as much per cent, on his outlay as B invested.

B also sells his stock' and gets S122- more than he gave for it, but his

gain per cent, on his outlay is only half as great as that of A. Required

the amount invested by each. Ans. A, $100; B, $50.

Why is the negative solution rejected?

Verification. 50 per cent, on $100 is $50. And since A sold his

stock for $50 more than he gave for it, he gained 50 per cent, on the

$100 of outlay. B gained 25 per cent on his outlay, and 25 per cent,

upon $50, is $12^.

41. Two travellers set out at the same time, the one from A, and the

otlier from C, and travel towards -,

each other at uniform rates. After meeting at B, the traveller from A
is a days in reaching C, and the traveller from C, c days in reaching A.

How long was it after the time of starting until they met at B, and

how long was each traveller in performing the distance A C.

Time of meeting, dc y^ac. Traveller from A, a ± x/ac; traveller

from C, c ± y/ac.
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What is the moaniug of the negative sign in the values of the time ?

When only can the time occupied by the traveller from A be negative ?

How then will both expressions for the time occupied by the other

traveller be affected, with the positive or negative sign ?

42. Same problem as the last, except that the traveller from A is 9

days between the points B and C, and the traveller from C, 25 days

between the points B and A.

Ans. Time of meeting, ± 15 days ; time occupied by traveller from

A, 24, or— 6 days ; time occupied by the other traveller, 40, or— 10

days.

43. In a certain bank there are $438 worth of 5 and 3 cent pieces,

the number of the latter is exactly the square of the number of the

former. Required the number of pieces of each kind.

Ans. 120 five cent pieces ; 14,400 three cent pieces.

44. Required to find two numbers, such that their sum, their pro-

duct, and the difference of their squares, may all be equal to each other.

Ans. x' = % + ^J, x" = ^-^~^', y'= ^ + ^J, y = ^— ^/"|:

45. In the year 1706 the French made a descent upon Charleston;

but " South Carolina," says Bancroft, " gloriously defended her territory,

and, with very little loss, repelled the invaders." A certain number

of the French were killed and wounded, and 100 were taken prisoners.

The number of killed and wounded was to the number of uninjured,

including the prisoners, as 1 to 3. And the square of the number that

escaped in safety from the expedition, was to the square of the number

killed and wounded, as 6i to 1. Required the number of invaders,

and the number of killed and wounded.

Ans. 800 invaders, and 200 killed and wounded.

* Verification. If 200 were killed and wounded, then 600 were un-

injured, and 200 : 600 : : 1 : 3. And, since 100 were taken prisoners,

500 escaped without harm from the expedition, and (500)^ : (200)^ : :

6J :1.

Why is the value connected with the negative sign of the radical

rejected?

46. In the year 1842 South Carolina converted the citadel at

Charleston, and the magazine at Columbia, into military academies,

which were to be supported by the sum of money appropriated annually
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previous to this time to a guard of soldiers. The interest upon this

sum for 21 months, amounted to $19G0, and the square of the interest

for 6 months exceeded the square of 100'" part of the sum by $288,000.

Required the sum appropriated annually to the military academies, and

the rate of interest. Ans. 816,000, sum ; 7 per cent, interest.

47. A man in Cincinnati purchased 10,000 pounds of bad pork, at

1 cent per pound, and paid so much per pound to put it through a

chemical process, by which it would appear sound, and then sold it at

an advanced price, clearing 8450 by the fraud. The price at which he

sold the pork per pound, multiplied by the cost per pound of the

chemical process, was 3 cents. Required the price at which he sold it,

and the cost of the chemical process.

A71S. He sold it at G cents per pound, and the cost of the process

was i cent per pound.

48. The fore wheel of a wagon makes 12 more revolutions than the

hind wheel, in going 240 yards; but if the circumference of each

wheel be increased one yard, the fore wheel will make only 8 more

revolutions than the hind wheel, in the same space. Required the

circumference of each.

Ans. Circumference of fore wheel, 4 yards ; circumference of hind

wheel, 5 yards.

49. In the year 1853 there were a certain number of Woman's

Rights conventions held in the State of New York. If 6 be added to

the number and the square root of the sum be taken, the result will bo

exactly equal to the number. Required the number. Ans. 3.

How does the negative solution arise ? Why is it neglected ?

50. A planter purchased a number of slaves for $36,000. If he had

purchased 20 more for the same sum, the average cost would have been

$150 less. Required the number of slaves, and their average price.

Ans. 60 slaves ; average price, $600.

51. A planter purchased a number of slaves for m dollars. If he

had received n more for the same sum, their average price would have

been c dollars less. Required the number of slaves and their average

price.

V
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n /4:nm + en'
,,

n /inm -\- cn^

2 ' V 4c ' 2 V 4c '

x' and a;" exjiressing the uimiber of slaves. Then, —, and -^ will ex-

press the average price.

Now, when n is zero, the two values of x ought both to be infinite,

indicating an absurdity. But the expressions will not point out an

absurdity unless reduced to their lowest terms by extracting the

indicated roots. Then the two values of x may be written — — dz

m— -| -^, plus any other terms containing the higher powers
en(

of X in the denominators.)

Now, make n = 0, and the two values of x both become infinite.

An expression can never be correctly interpreted unless it is reduced

to its lowest terms, for, as in the present instance, there may be a

common factor in all its terms, and a particular hypothesis made upon

that common factor may lead to absurd results.

What do the values become when c = ? what when n :i= and

c = ?

52. The field of battle at Buena Vista is 6 J miles from Saltillo.

Two Indiana volunteers ran away from the field of battle at the same

time ; one ran half a mile per hour faster than the other, and reached

Saltillo 5 minutes and 54^*^ seconds sooner than the other. Kequired

their respective rates of travel. Ans. 6, and 5^ miles per hour.

53. The New York shilling is 12| cents. A merchant bought a

quantity of cloth for $60. The number of shillings which he paid

per yard was to the number of yards he bought as 1 to -i-ff^. llcquired

the number of yards and the price per yard.

Ans. 48 yards ; 10 shillings per yard.

54. A grocer sold 1000 pounds of coffee and 1500 pounds of rice

for $240 ; but he sold 500 pounds more of rice for $80 than he sold

of coffee for $60. Required the price per pound of the cofiee and rice.

Ans. Cofi"ee, 12 cents per pound ; rice, 8 cents per pound.

55. A, B, and C, entered into partnership, and gained as much as

their joint fund, wanting $200. A's gain was $240. He invested
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$100 more than B ; and the joint investment of B and C was S700.

Required the gain per cent., and the amount invested by each

partner.

Ans. 80 per cent. A's capital, S800 ; B's, 6200 ; C's 3500.

56. There is a vessel containing 25 gallons of -wine ; a certain quan-

tity is drawn out, and its place supplied by water. As much is drawn

out of the adulterated liquor as was first drawn out of the pure wine,

and there is now but 16 gallons of pure wine left in the vessel. Re-

quired the quantity of pure wine drawn out each time.

Ans. First draught, 5 gallons ; second draught, 4 gallons.

57. Same problem as last, except that the vessel contains m gallons

of wine, and that, after four draughts, — gallons of pure wine are left.

. Ans. Inrst draught, m—\/m; second, =— ; third,
;

_ ^/m m
. _^, m — y/m
fourth,

These results can readily be verified ; for, when the four draughts

are taken from m, there will remain

— ^m— m ^m— m ^m — m ,. , . ,\/m -I =— H 1 ^^—— which is equal to v/w

+ i — vm -\ — — 1 -f =^ or ^=^ -f — , or

_ y/in ^m^ ^m
v^m -|- 1 —v^wi 1

, or —

.

m m

The equation to be solved was really one of the fourth degree ; but,

owing to its peculiar form, it was readily reduced to an equation of the

second degree. Only one of the four values of the unknown quantity

have been used.

58. Same problem as last, except that the vessel contains 64 gallons

of wine, and that, after four draughts, the gLth of a gallon is left.

Ans. First draught, 56 gallons ; second, 7 ; third, || ; fourth, ^f^.

Verify these results by adding them together, and subtracting their

sum from 64.
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59. Two cotton merchants rent a house for a certain sum, with the

understanding that each shall pay in proportion to the number of bales

of cotton he puts in the house. A puts in 500 bales-, and B as many

bales as makes his proportion of pay amount to $200. B afterwards

puts in 500 more bales, and then his proportion amounts to $225. Re-

quired the sum paid for house rent, and the number of bales first put

in by B. Ans. House rent, $300. B first put in 1000 bales.

60. A gentleman has two sums of money at interest, amounting to

$1150. The larger sum, being put out stii per gent, less advanta-

geously than the smaller, brings only the same amount of yearly inte-

rest. At the end of ten years, the smaller sum, added to its simple

interest for the whole period, is to the larger sum, added also to its

simple interest, as 11 is to 11 2 . Required the two sums, and the per

cent, on each.

Ans. $550 at 10 per cent., and $600 at 9i per cent.

61. A gentleman bought a rectangular piece of laud, giving $10 for

every yard in its perimeter. If the same quantity of ground had been

in a square shape, it would have cost him $20 less. And, if he had

bought a square piece of land, of the same perimeter as the rectan-

gle, it would have contained 6|^ square yards more. Required the

sides of the rectangle. Ans. 4 and 9 yards.

G2. A and B, together, invested $800 in a speculation. A's money

was employed 3 months, and B's 5 months. When they came to set-

tle, A's capital and profits amounted to $451 ; B's amounted to $375.

Required the capital of each, aud their gain per cent,

Ans. A's, $440 ; B's, $360. 10 per cent. gain.

63. The seventh page of a treatise on Analytical Geometry has 11

more lines than the twentieth page of a treatise on Optics ; but the

seventh page of the Analytical Greometry has 4 letters less in each

line than there are lines in the twentieth page of the Optics, whilst the

twentieth page of the Optics has as many letters in each line as there

are lines in the seventh page of the Optics. The total number of let-

ters on both pages is 3542. Required the number of lines and letters

in each page.

Ans. Analytical Geometry, 46 lines, and 42 letters in each line;

Optics, 35 lines, and 46 letters in each line.
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64. Required to divide the quantity, a, into two such parts, that the

sum of the quotients, arising from dividing each part by the other,

shall be equal to m.

. T^. ^ .. ^ , <^ /"«^ — ^ f (i /'" — 2
Ans. First part, —- + --\ / , or \ / — :

^ ' 2 ^ 2 V "i + 2' 2 2 V w( + 2
'

, a a I )ti — 2 a a /m— 2
second part, —— -r-\ / -, or —- + —-\ / .

^ '2 2 V «^ + 2' 2 ' 2 V 7n + 2

Are there four independent values? When only will these values

be real ? When will one always be negative ? When will the two

parts be equal ?

65. Required to divide 10 into two such parts, that the sum of the

quotients, arising from dividing each part by the other, shall be equal

to 2Jffi. Ans. 7 and 3, or 3 and 7.

66. Required to divide the number 100 into two such parts, that the

sum of the quotients, arising from dividing each part by the other,

shall be equal to 2. ^Ih.s. 50 and 50.

67. Required to divide 15 into two such parts, that the sum of the

quotients, arising from dividing each part by the other, shall be equal

to9f .4h.s-. 13 i, and li.

68. Four numbers are in a continued proportion, each number being

an exact number of times greater than that which precedes. The dif-

ference between the means is 8, and the difference between the ex-

tremes 28. Required the sum of the means, and the terms of the

proportion.

Ans. Sum of the means, 24. The numbers are 4, 8, 16 and 32.

In this example, let the unknown quantity be the sum of the means.

69. Same example as preceding, except making the difference of the

means, a, and the difference of the extremes, h.

Ans. Sum of the means + o \ /^ -r--. greater mean a +V 6— 6a ^

/ h -\-a -, / h -\- a h
a K/

^
;

smaller, a W a; greater extreme -^ -f

Ma^ + b^(b— 3a) „ b
,

/4a' -f b'V riTs^, ^; smaller-- +1\/-^^
28
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The negative values liave been rejected.

When will these values become infinite? When imaginary ?

70. There are two numbers, such that the square of the first added

to their product is equal to m, and the square of the second added to

their product is equal to n. What are the numbers ?

, „. m ^ ,
n

A71S. First, =b — _ ; second,
^m -\- n ^m -\- n

71. Two numbers are to each other as m to n, and the square of the

first added to the product of its first power by m, is equal to the square

of the second, added to the product arising from multiplying its first

power by n. What are the numbers?

Ans. First, 0, or — m; second, 0, or — n.

72. The sum of the squares of two numbers diminished by twice

their product and by twice the first number, is equal to unity; and the

sum of their squares added to the first power of the second number, is

equal to twice the product of the numbers. What are the numbers ?

Ans. First, 0, or— | ; second, — 1, or — -^.

TRINOMIAL EQUATIONS.

353. A trinomial equation is one of the form, x^" + x" = q, involving

but one unknown quantity and three terms, and having the unknown

quantity in one term affected with an exponent double of that with

which it is affected in the other. A trinomial equation then contains

two terms, in which the unknown quantity enters, and an absolute

term.

Let it be required to solve the equation, x'^ + cc^ =: 20.

Let x^ = y. Then the equation becomes y^ -\- y = 20.

The last equation gives y = + 4 and y = — 5. But, x^ = y.

Hence, x" = 4, or— 5. Then, x' = + 2, x" = — 2, x'" = + V 5^

x"" =— ^/— 5. Either of the four values will satisfy the given

equation, a-'' -\- x^ = 20. The substitution of the last value gives

(— x/— 5/ + (— ^^^bf = 20, or, 25 — 5 = 20, a true equation.

Solve the equation, x^— x^ = 702. Make x^ — y. Then the equa-

tion becomes y"^— ?/ = 702. From which, ?/=-{- 27, or, — 26. But

x^ = y. Hence, x = 4/27 = 3, and x = ^— 26.

There are really four more values for x, since, as will be shown here-

after, the number of values is exactly equal to the degree of the equa-
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tion. But the method of determining the other values belongs pro-

perly to the general theory of equations. The two values found can

be readily verified.

The examples given are of a simple character. The equations were

already of the proposed form. But it frequently happens that an arti-

fice must be employed to put the equation under the form of x^" -|- a;"

= q. Take, as an example, x^ -f ^x^ 4- 9 = 21. Add 9 to both

members, and we have x^ -\-^ + ^x^ + 9 = 30. Make a:^ + 9 = /,
then, v^a;^ -f 9 = y, and the equation becomes y^ \- y = 30. From

which we get, ?/ -^ -f 5, or— 6. Then, a;^ + 9 = 25, or, j;^ -f 9 = 36.

The values of x are -f 4, — 4, + v/27, and — v/27. The negative

sign of the radical, ^az -(- 9, must be taken in connection with the last

two values. This is indicated by the equation, y/x^ -f- 9 = y = — 6.

Again, take ^^^^' + 1 = '^-^^ + 01-

This may be written, ^:i±^'— (^!±J^' = 90.XX
a-^4- 9

Let =r ?/. The equation then becomes if— ?/ = 90. Hence,

2/ = -f- 10, or — 9. Then, ^-^ =:. 10, and "^^ = — 9. These

9 .9
equations gives the four values, -f 9, -f 1, and— - -\- 2 </45,— ~
— i V'45:

The equation, i/x -f 1 -f X/x^ -1- 2x + 1 = 20, ,may be changed

into ^x -\-l+ Vx -f- 1 = 20. Let Va; + 1 = y. Then ^/x + 1

= 2/^ and the equation becomes %f -{ y = 20. From which, ?/ = 4, or,

— 5. Then ^/x + l = 16, and ^x -f 1 = 25. Hence, x = 255,

or, x = 624.

The equation, x^ -f ^x^ -f 56 = 34, may be placed under the pro-

posed form by adding 56 to both members. Then, x^ -j-5Q-{-\/x^ -f- 56

= 90. Let Vx^ + 56 = y. The equation then becomes y^ + y = 90.

From which, y = -f 9, or, — 10. Then a; = -f 5, — 5^ 4. y 4T,

--^/44^

These illustrations are sufiicient to explain the spirit of the process.

No general rule can be given. Any modification may be made upon

the equation that will place it under the proposed form.
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GENERAL EXAMPLES.

1. Solve the equatiou, a:| + xi = 12.

Ans. 03 = + 27, or — 64.

2. Solve the equation, x + xl = Cy. Ans. a; = 4, or 9.

3. Solve the three equations,

2' + zy + y^ = 1900 (A).

x'' + xz + z- = 1300 (B).

I/'-^^I/+^'= 700(C).

Subtracting (B) from (A), and (C) from (B), and factoring, we get,

GOO ,^^ ,
600 ,^^y+z + x = CD), nudv + z + x = (E).

1/— X z—y -

x -4- z
By equating (D) and (E), wc get y — ^—^— . This value of »/, sub-

stituted in (D), gives z + x = , or, z~— x-^= 800 ; from which z^ =

x" + 800. Substituting for z its value in B, we get ce" + x V x' + 800

+ a;2 + 800 = 1300. From which, x ^x^ + 800 = 500 — 2x\

Squaring and reducing, there results, S.^"— 2800x' =— 250000, or,

. 2800x2 250000-^3
3

The combination has led to a trinomial equation, which, when solved,

will give, for one system of values, x = 10, y = 20, and z = 30.

4. Solve the equations,

f + ^^ + x^ = 7,

if— xy— a;^=— 5.

Ans. X =: -f 2,— 3, y = -\-\ — 1.

6. Solve the equations,

X + y +2 =6,
x^-\-f-\-^^ = 14,

xz = 3.

Ans. y ^ 2, X = 1, z = S.

One system of values only given.

6. Solve the equations,

i/ + x'= 2600,

f— 2y=:2x.
Ans. y = 10, and x = 40.

One set of values only given.
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7. Solve the equations, i/^ + x^ = ^ + 2/* + B,

A71S. One set of values, y = 2, and x = 6.

8. Solve the equation, ^x^ + 4+ .^a;- + 4 = 6.

Ans. One set of values, x' = + \/12, x" = — v/12

9. Solve the equation, y/y'—y + V/— y =3v/10 + </90.

^l??s. One set of values, y = 10, or y = — 9.

The positive value of the radical only is taken.

10. Solve the equation, x^ + 7 + y/x^ + 7 = 20.

Ans. x' = + 3, x" = — 3, ./;'" = + v/"T8, .c'- = — v/lS:

PROBLEM OF THE LIGHTS.

354. Two lights are placed on the same indefinite right line, the one

shining with an intensity represented by a, the other with an intensity

represented by b ; the problem is to find, on this indefinite line, the

point or points of equal illumination— assuming a principle of optics,

that the intensity of a light varies inversely with the square of the

distance from that light.

A IB
Let A be the position of the first light ; B, that of the second.

Let m = AB, the distance between the lights.

Let a = intensity of first light, at one foot from A.

Let b = intensity of second light at one foot from B.

Let I be the unknown point of equal illumination.

Let B I = ??(-— x = distance of same point from B.

Now, in accordance with the assumed optical principle, the intensity

of the first light, two feet from A, will be expressed by -7-\for 2^ : l'^ : :

a : -r), at three feet, by -r-, and at x feet, by —^, and this last expres-

sion will represent the intensity of the first light at the unknown point,

I. In like manner, the intensity of the second light, at B, will be

28 *
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denoted by r^. But, by the conditions of the problem, the in-
(vM — xy '' ^ ^

tensities of the two lights must be equal at I. Hence, wc have —^ =

r„, which may be chauo-cd into — = — , and, by extract-
0" — xj -^ °

(?)i— a';)2 6 '
^ ->

ii)<;- the root, we get = rb —-. We will, for convenience, callm— x ^i
.r' that value of x which is connected with the positive sign in the

second member, and we will call od' that which is connected with the

negative sign. Hence, -. = —^, and r, = — —^. Andm— x ^i m— x" ^5
1 • xi 1- , ,

m^/a
, „ my/

a

solving these equations, we get x: = _ ——^ and x'' =—=:--^^—-^.

Now, since there are two distinct values for rr, we conclude that in

general there will be two points of equal illumination. By this we do

not mean that there will be two points of equal brilliancy, but that there

will be two points where the intensities of the two lights will be equal

to each other. By subtracting cc' and x" in succession from m, we get

,
mh .

,,
m^h^ -' - and — -"

y/a + y/h ^a — y/h

Hence, we have the system of values:

x' = —^= :=, distance from A to first point of equal illumination.

v/a + v/6

,
m^h T « -r.m — x = —= m, distance from B to same point.

^/a+ ^h

x" = —^ -=, distance from A to second point of equal illumina-

m— x" = := -^_, distance from B to same point.

Now, these expressions have been deduced upon the supposition that

the point, I, was between A and B, and, consequently, we have assumed

that the distance A I is positive, when estimated on the right of A,

and the distance B I positive, when estimated on the left of B. Hence,

if either x' or ic" becomes negative in consequence of any imposed



EQUATIONS OF THE SECOND DEGREE. 331

condition, the corresponding point of equal illumination will be found

on the left of A. And, in like manner, if either m— x' or m— x"

becomes negative, the point will be found on the right of B.

We will begin the discussion by supposing a = b. Then, x' =
mVa ms/a m AB •

x
•

i, u-—= =. = = = -C-, or A i = —-— . Hence, the point is halt

Va-\-Vb 2v/a ^ ^

way between the lights, as it obviously ought to be. Now, m — x',

which expresses the distance from B to I, ought to give the same point.

, , „ ,
«i-«/6 niy/b m ^^ ...

It does so, for m— x = -rm =r- = = = -r-- >v e will next
Va+ ^b 2V6 ^

examine whether there can be a second equally illuminated point, wheu

the intensities of the two lights are the same. Wc have x" =

, „ vi\/b ^, , . ,. ,= cc, and m— x = jr— =— oo. ihcse values indicate that

the second point is at an infinite distance on the right of B ; or, in

other words, that there is no such point at all. This ought to be so,

for, when the two lights are of equal intensity, the one cannot throw its

beams with the same power to a greater distance than the other, and

this must be the case if there be a second point. The second values

(x" and m— x") then denote impossibility. By going back to the

equation of the problem, wc see that it will become, when a = b, x^ =
(jn— xy, an equation which can only be true when m= 0, or x =—

.

But wi = is contrary to the hypothesis ; hence, x = -— is the only

true value. The assumption then, that there was a second point (a

being equal to b), was absurd, and led to oo , the appropriate symbol of

absurdity.

"We will nest suppose a > i.

Then, x' = —= n becomes "> — , because, if the denominator
^/a + v/i 2

m
were 2 ^/a, the value of the fraction would be "i^, and since the deno-

VI
minator is less than 2^ a, the value is greater than tt-

Hence, the point, I, is nearer B than A. In this case,

A IB r
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m— x' <^ ^, for, were the denominator of the fraction —~—^— __

m
exactly 'Z\/b, the value of the fraction would be ^^J t)ut since the deno-

minator is greater than 2, ^h, the value is less than — . This result

corresponds to the former, and places I nearer B than A ; that is,

nearer the light of feebler intensity, as it ought to do. Wc see that x"

is greater than m, for were the denominator of x", the -s/a, its value

would be equal to m, but as y/ a — y/ b is less than V a, x" is greater

than m. Hence, the second point of equal illumination is beyond B.

T 1 . ,f
m y/ b ^ . . ,

In this case, m— x = = =^ becomes negative, since the
^a—^/b ^

numerator is negative and denominator positive, and, therefore, the

second point must be on the right of B. The results then agree with

each other, and agree with the fact. For, after passing the point I, the

intensity of the 1st light becomes feebler than that of the 2d. At the

point B, there is the greatest diflference between their intensities.

Beyond B, both lights diminish in brilliancy, but the 2d more rapidly

than the 1st, because of its greater feebleness; and we at length reach a

point, V, where the illumination is equal.

Next, suppose h^ a.

Then, x! r= —^;= ^ <r — . For, were the denominator 2 ^TT, the

value of the fraction would be ~, but as the denominator is ^ 2 y/~a,

the value of the fraction would be <^ —

I"

Hence, the point, I, will be found nearer A than B. We have m— x' =

^ ~2 ; for, were the denominator 2 ^Ij^the value would
^/a + ^b

m
be = -

, but as the denominator is <^ 2 ^b, the value is ^ — . The
Z 2

results then agree, and place the point, I, nearer the feebler light.

Again, we have x" = —= =. affected with the sign minus, the
v/a— ^b
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numerator being positive, and denominator negative. The second point.

I", must then be on the left of A. By multiplying the numerator and

denominator, of the value of m— x", by minus unity, we will have ??i
—

x" = —=^ ^ m ; for, were the denominator z=z y/ b, the value
s/h— y/a

would be equal to m, and since the denominator is <^\/b, the value is

greater than m. Hence, the second point is beyond A at 1", as has

just been shown. Were the values of m, a, and h, given, the position

of the point of equal illumination could be readily determined. Let

m = 20 feet, a = 16, 6 = 36. Then x'= ^ feet, and m— x' = 12

feet, and the intensity of the two lights will be equal at the point cor-

responding to these distances. For, the intensity of the 1st will be

^, = \, and that of the 2d ^^= \

I" A I B

It can readily be shown that, between I and A, the intensity of the

1st light is greater than that of the 2d. Thus, at 2 feet from A, that

of the 1st light will be expressed by 4, and that of the 2d by -^. At

the point I", 40 feet on the left of A, and 60 feet from B, the intensi-

ties of both lights will be expressed by jjjjth, and arc, therefore, equal.

And, by assuming other points, and calculating the corresponding

intensities, we would find that they were only equal at I and I".

Now, let m = 0, and a unequal to h, then x', m— x', x", and

m — x"= 0. These are plainly absurd solutions, for the two lights,

shining with unequal brilliancy, cannot, equally, illumine the point

at which both are placed. By recurring to the equation of the problem,

x^ a
it becomes, when m =0, —, = —

. This equation can only be true

when a=zh, which is contrary to hypothesis.

Now, let m = 0, and a = h.

Then, x' = 0, m— x' = ; x" = —, and m — x" = — . The first

two values (x' and m— a;',) show that the point at which the lights are

placed, is equally illuminated. The second two (x" and m— x",) are

the symbols of indetermination. This ought to be so, for when the

equal lights are placed together, the points, at one foot, two feet, three

feet, &c., are as much irradiated by one light as the other. There is,



334 EQUATIONS OF THE SECOND DEGREE.

therefore, no particular determinate point at wliich the intensities are

equal, and we say that the problem is indeterminate. By recurring to

the ef|uatiou of the problem, = -—, we see that when m = 0,
^ ^

(in— xy b

and a=h,it reduces to an identical equal equation, x^ = x^, which can

be satisfied for any values of x.

Whenever we get tt as a solution to a problem, we can tell, by recur-

ring to the original equation, whether it indicates indetermination. If

the particular hypothesis, which reduces the solution to — , also reduces

the original equation to an identical form, we have a case of indeter-

mination. But, if the given equation do not reduce to an identity, we

have a vanishing fraction.

Another test, also, may be employed. If the value becomes -r- in con-

sequence of a single hypothesis, we know, certainly, that we have a

vanishing fraction, and not an indeterminate solution. The preceding

values become -^ in consequence of the two hypotheses, m = 0, and

a = h, and might or might not be vanishing fractions. Thus, the ex-

pression, \ r^--rhi

—

To^, is a double vanishing fraction for a;= a, and^ {x— a) (x^

—

Iry

X =:h.

Now, suppose the first light extinguished ; then, a = ; and we

find x' and x" = 0, and m— x, and on— x" = m. These solutions,

at first, seem absurd, since they indicate that the point of equal illumi-

nation is at A. But, suppose the light at A to be very feeble, there

will then be two points of equal illumination, I and F, very near to

and on opposite sides of A. Make the first light still more feeble, and

the two points, I and I', will approach nearer to A ; and, finally, when

that light is extinguished, they will unite at A.

Next, suppose both lights extinguished, or a = 0, and b = 0.

Then, x', x", m— x', and m — x" become —
-, indeterminate, as they

ought to be.

Suppose m = cc, or that the lights are infinitely distant from each
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other. Then, if a and h are finite, the values all become infinite, as they

ought, since there can be no point of equal illumination. The equa-

tion of the problem, —. =
, can be satisfied, when m == oc,^ x^ (m— xy

by making x = 0, which places the point of equal illumination at A

;

or, by making x = m, which places the point of equal illumination

atB.

Suppose, a := go; then, x' and x" both become equal to m, since

v^6 may be neglected in the denominators of the fractions, and the

point of equal illumination is then at B. The values of m— x' and

m— x" become zero, and indicate the same point. This ought to be

so ; for, by making the intensity of one light infinitely great, wc make

that of the other relatively infinitely small, and we then ought to get

the same result as we did when one of the lights was supposed to be

extinguished.

UNDETERMINED COEFFICIENTS.

355. The method of undetermined coefilcients is used to develop

algebraic fractions into a series, and to determine the value of the con-

stants which enter into identical equations j that is, equations which can

be satisfied by any value whatever, attributed to the unknown quantity.

For the development of fractions we assume the form of develop-

ment ; and we are governed in our assumption of this form by our

knowledge of what it ought to be. Thus, if wc proceed to expand

—-— by the ordinary process of division, we obtain —— = 1

Q/ ~j" X ill —r* OC rt

/y.2 ^-,3 ^^4 rv,5

H s— —, + ^——, 4-, &c. The quotient is an infinite series,

arranged according to the ascending powers of x, and having x in each

term affected with a positive and an entire exponent. The first terra may
be supposed to contain x, affected with a zero exponent, and the coeffi-

cients of x are then 1 1 -. -, -f &c. ; and it is evident that

these coefficients are entirely independent of the particular values that

may be attributed to x. They are still 1, f-
—

,

s + &c.;
a (t «
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when X = 0, 1, 2, 1000, anything whatever. We may remark, in

this connection, that the independence of the coefficients upon the

vakie of the letter with which they are associated is not confined to the

expansion of fractions, but is true in all developments whatever. Thus,

(a + xy- = a^ -j- lax + oi? ; the coefficients arc a^, 2a, and 1, and

these coefficients will not be altered by any change in the valu6 of x.

We have seen, by perforhiing the division, that the exponents of x,

in the development of
'— , must be positive and entire, and that

the coefficients must be independent of x. If, then, we were required

to assume the form of development of this fraction, or any like it, we

would know that the assumed form must fulfil the required conditions.

Now, since a may be regarded as the coefficient of a", the fraction,

, may be considered as arranged with reference to x. both in the
a -\-x •'

numerator and denominator; and we have seen that a fraction so ar-

ranged, beginning with the zero power of x, gives positive and entire ex-

ponents for X in the quotient. This law can readily be shown to be gene-

ral, and it is not even necessary that the zero power of x should enter

into the numerator. If the exponents of x in the numerator are all po-

sitive and entire, and the terms arranged according to the ascending

powers of x, and if the denominator is also arranged in like manner, and

contains a constant^ a', that is, a term involving x°, then all the exponents

will be necessarily positive and entire. For, take the general fraction,

^-"^^ f .

^. = A -f 'Bx'^ -f Ca;-"" -{- &c., (N), in which the second

member represents the development of the fraction. Now, since a frac-

tion and its development must constitute an identical equation, it is

plain that, from the nature of such equations, (N) must be true when

£c = 0. But C.x"'', which represents the term (if any) containing a

C
negative exponent, can be written — , and is equal to infinity when

X = Q. Hence, the whole second member is infinite. But, a; = ;

reduce the first member to — ; n, on, p, and q being supposed posi-

tive. Now, if a == 0, we have —^ = = second member =r oo, which

is absurd. If a be not zero, still we have — = oo, or a finite quantity

equal to an infinite, which is absurd.
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If, then, all the exponents in the numerator and denominator are

positive and entire, and the denominator contains a constant, or both

numerator and denominator contain constants, all the exponents of the

development must be positive. "We will now show that all the expo-

nents of X must also be entire. We have represented, by Bx~, the

term, if any, involving a fractional exponent. Now, suppose — =: ^.

Then, Bx ° = Ba; = B^/j:. But every square root has two distinct

values. Hence, ^y/x has two distinct values, and the whole second

member has two distinct values. But no fraction containing only entire

exponents can give two quotients. The assumption, then, of a frac-

tional exponent in the development is absurd. If —= J,
|, |, &c., the

term Bx > would have three values and three quotients, which is ab-

surd. So, if — = any fraction, there would be more than one quotient.m
.

We are now prepared to assume the form of development of any al-

gebraic fraction, arranged according to the powers of a certain letter,

and having that letter in the first term of the numerator affected with

an exponent equal to, or greater than that of this letter in the first or

last term of the denominator. The exponents of the aiTanged letter

are also assumed to be positive and entire, both in the numerator and

denominator.

Let us then place —;— = A -f- B.c + Gx^ + J)x^ + Ex* + &c., in
a -j- X

which A, B, C, D, &c., are independent of x, and in which all the ex-

ponents of x are positive and entire. A is the representative of that

term which does not contain x, or contains x affected with a zero expo-

nent. There is generally such a term in a development, and there

must, of course, be a representative of that term. Clearing of frac-

tions and arranging according to the ascending powers of x, we have

a = Aa + a B
I

i- -f rt C
I

x2 -f « D
I

x^ -f a E
I

x*-{-&c. (31).

+A
I -f B I

+C\ +cl

Now, since the coefficients are supposed to be independent of x, their

values will not be affected by making x — 0. If then we can deter-

mine these values when x = 0, they will be true when x = 1, 2, 3

;

anything whatever. Making x= 0, we have a = Aa. Hence, A = 1.

29 w
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Now,, since a = Ka, tlaese two terms cancel each other, and (M) becomes

+a| +b| +c| +d|

Dividing both members of this equation by x, which we have a right

to do, we get

= a'Q + aG \x + aJ) \x^ -\- ar& \x^ + kc. (N).

+A +B I
+C

I

+D

I

Making, again, a; = 0, wc have left, = aB -f A. Hence, B = —
A 1— = . Now, since «B + A has been found to be zero, they may
a a

be stricken out of (N), and that equation will become

+b| +c| +d|

And again, dividing out by x, we have

0= aQ + a D
I

x^ + a E
I

.7j2 + &c. (P).

+B +C| +d|

Making cc = in (P), we have left, = a C + B. Hence, C =
B 1= H 2- Omitting the term, oC + B = 0, in equation (P),

and dividing again by x, we have

= a D + a E
j

a; + &c. (2).

Making a: = 0, we have left, = aD + C. Hence, J) = =
a

3 . Dividing (2) by x, and again making a; = 0, we have aE + D

= 0. Hence, E = = -|—j. Now, if we substitute for A, B,
a a* ' '

0, &c., their found values, in the original equation, = A + Ba-
ft + x

+ Cx^ + Da-3 + Ea;^ + &c., we will have —"—^= 1 _ i^ + ^ _
a -\- x a a^

7? X^ X^
-, -{—J r + &e. : the same result that we obtained bv division
rr a* a" -^

By transposing a to the second member in equation (M), we have

= A a
I

x° + a B
I

a; + a C
I

a;" + rr D
I

a''' + &c.

—

«

+a| +b| 4-C
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And, since we have found A« — a =zO, aA 4- A = 0, aC + B = 0,

aD+ C= 0, &c., we conclude, that, if ice have an equation wliosefirst

member is zero, and xohose second member contains all its terms ar-

ranged according to the ascending powers of a certain letter, the expo-

nents of this letter being all positive and entire, and its coefficients in-

dependent of it, these coefficients will be sep)arately equal to zero.

This is the first enunciation of the principle of undetermined co-

efficients, and ought to be remembered.

The second enunciation, (which is an immediate consequence of the

first), is as follows : if we have an equation of the form, a-\-hx+ cx^ -|-

dx^ + ex* + &c., =a' -\- b'x + c'x^ + ^'^^ + '^^'^ + &c., which is satis-

fied for any value of x, then the coefficients of the like powers of x

in the two members will be respectively equal to each other.

For, by transposition, we have r= (a'— a) x° -\-
(Jj
— b) x -\-

(c'— c) x^ \- (d'— d') x^ -f (e' — c) x* -\- &c. And, since these coeffi-

cients are independent of x, we must have, by what has just been shown,

a'— a = 0, b'— b= 0, d — c=0, d' — d= 0, ^ — e= 0, &e.

Hence, a' =^ a, b^=b, cf = c, d= d, e' =^ e, as enunciated.

The preceding equation, a + ix -f cx^ -f dx' -f ex* -f &c. = a' -f

b'x -f c'x^ -\- &c., and all other equations to which the second enuncia-

tion is appliablc, belong to a class of equations called identical equa-

tions, the two members of which diffi^r only in form.

It is, in general, most convenient to develop expressions in accord-

ance with the second enunciation.

1

—

X
Required the development of .

Let J-=^ = A -f B.r + Gx' -{- J)x' -{- Ex^ -f &e.

Clearing of fractions, we have 1 — x = A -f (B + A) a; -f-

(C + B)x'-hCG + D) a;=» -f (E + D) X* -f &c. By placing a-= 0, we

have A = 1, and we might proceed as we did with the fraction, .

' a -f- X

continually dividing by x, and making x := in the resulting equation.

But, by the second enunciation, we have at once A= 1,B + A = — 1,

C + B = 0, C + D = 0, and E -f D r= 0. From which, A := 1,

Br=— 2, C = +2, D=— 2, E=— 2. And, substituting these

1 ^
values of A, B, C, D, E, &c. in the equation, , 1= A -f Bx + Cx^

1 -\-x

I X
+ &c., we get y-— =. 1 _ 2x -f 2x^— 2x^ -f 2x* — &c.
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This is tlic same result that we would obtain by actually performing

the indicated division.

We have assumed the form of development to be A + Bx + Cx^ + &c.,

in which the exponents are all positive and entire. Now, if we have

an expression whose development must necessarily contain negative or

fractional exponents, it would be absurd to place it equal to A + B + a; +
C.T^ + &c., and the result will make manifest the absurdity by the

symbol, cc . Suppose it be required to develop -. It is plain

that the first term of the development is x"' ; if, then, we attempt to

develop the expression by the method of undetermined coefficients, we

commit an absurdity, and that absurdity ought to be made manifest in

the result by the appropriate symbol, co .

Let, then, ——, = A + Bx + Cx^ + J)x^ + Ex" + &c.
X — x/

From this we get l=Ax+ (B—A)x^-{-(G— B)x^-].(D— C)x*+&c.

Now, in accordance with the first enunciation, make x= 0, and we

get 1=0, an absurd result. But, if we first divide both members by

X, and then make x = 0, we will have i = go = A, and the absurdity

is pointed out by its appropriate symbol.

The above expression can be developed by changing its form. De-

compose 5 into its factors, — X j; , then develop bv
X— a; X 1 — X ^ 1 — X

the method of undetermined coefficients, and multiply the development

by — . By developing, we find = 1 + x +x^ -}• x^ -\-x*+ &c.

;

111
, „

consequently, --^= — X -, =r x"' + x° + x + x^ + ^^
-f

.x" + &c. The series is evidently arranged according to the ascending

powers of x. For most expressions, a slight inspection will show whe-

ther their development will contain negative or fractional exponents.

and, consequently, whether the assumed form is right. Thus,
1— x~-

cannot be placed equal to A + Bx + Cx^, &c., because its development

must contain negative exponents ; cannot be placed equal to

1 +x^
the assumed form, because its development must contain fractional ex-

ponents These expressions, and others like them, can, however, be
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espauded into a series by changing their form. Place x~^ = z, then,

1 1

1— x-^ 1 —

z

• Let 1 — z = A + Bz + Cz^ + D2' + Ez' + &c.

We will find -—— = 1 + z + z' + z" + z' + kc

Now, replace z by its value, and we have ^ = 1 -f x~^ + x~''

+ x-^ + X-' + &c.

i 11
In like manner, place x'~ = z. Then, = = A + B~

1 + x-^ ^+'
-\- C-s^ -f Ds^ + E2'* 4- &c. We will find by the method of undetermined

1

1 +^
1 J|, 3

value, we have j- = 1 — x'~ + x— x'- + x'^ + &c.

1 + a-'^

FAILING CASES.

356. Any fraction, all of whose exponents are positive and entire iu

the letter according to which the series is to be arranged, can be de-

veloped, provided the denominator contains a constant. Again, any

fraction, all of whose exponents arc positive and entire in the letter

according to which the series is to be aiTanged, can be developed
;

pro-

vided, that there is one terra, at least, in the denominator, the expo-

nent of whose arranged letter is equal to or less than the exponent of

the same letter in, at least, one term of the numerator. A fraction

that fulfils either of the foregoing conditions can always be developed,

and the development will be the same as the quotient. The reason of

this is plain ', the method of undetermined coefiicients gives a develop-

ment for fractions, which is the same that would be obtained by actual

division, beginning with the lowest power of the arranged letter. Now,

a fraction that fulfils either of the foregoing conditions, will, when ex-

panded by division, necessarily give positive and entire exponents in

the arranged letter, when the division has been begun, with the nume-

rator and denominator arranged according to the lowest power of this

letter.

Division would give us two quotients for zr, according as we
X -\- L

made x, or 1, the first term of the divisor; but the method of undeter-

29*
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mined coefficients gives but one development, whicli is the same as

that obtained by arranging the numerator and denominator with refe-

rence to the lowest power of x. Therefore, the formula, which is ap-

plicable only to positive and entire exponents, must fail, when the least

exponent of x in the numerator is less than the least exponent of x in

.x^ 4- c^
the denominator. Thus, '—^ cannot be developed, because o^, which

involves the lowest power of x in the numerator, gives a quotient

affected with a negative exponent when divided by x, the correspond-

ing term of the denominator.

GENERAL EXAMPLES.

1. Develop \ -{ x. An$. 1 -f x.

2. Develop = ^ into a series.

Am. 1 — X -{ X?— x^ -f cc®— x} -{ x^— &c.

] ,5^
3. Develop

^j
-r- into a series.

Am. \—x— ^x^— 16,x^— 64cc''— 256a;5— 1024a;«— &c.

1 ^2
4. Develop into a series. . .,

^ 1 -f- a; Ans. 1 — X.

x-'-
5. Develop = ^ into a series.^1 — X '

Ans. x-^ + X-' + ^~' + ^"' + ^~'° + &c.

X
6. Develop

'—- into a series.

l—xT'
1 ~ 4 5

Am. x'^ -\-x^ -f a; + o;^ -f x^ + a-^ -f &c.

1 + a;

7. Develop
:j

^ into a series.

Am. 1 -f 3x + 6a;2 + Vlx^ -f 24.x^ + 48x5 -f &c.

Am. 1 — X + ic"— x^ -f X*— x^ + x'-'— x'^ + &c.

8. Develop
^ _^ ^ ^ ^2 ^ ^ i'^to a series
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9. Develop z, s ^ -, into a series.

Ans. 1 — X -i- x'— x^-\-x'°— x''+x''— x'^+ x'°— x"' -^ &e.

X^
-rS

10. Develop -. Am.
a + a -\-

x^
11. Develop ——r- into a series.

X + 1

Ans. x^— x^ \- X*— x' + x^— x' + &c.

x^ -\- x^ .

12. Develop
'- ^ into a series.

x" 4.r.' 4.7:^ 4x'
,

2o 12o b2o

13. Develop
' — into a series arranged according to the powers
X y

of y. Ans. a;"-' + x'-'^y + x"'"'/ + x'-^y^ + . . . . y».

14. Develop -^——

.

.

x^ -\- X Ans. X.

_ ^ ,
.r^ + 3x2 + 3x + 1 .

^15. Develop = into a series.

Ans. x^ + 2x + 1.

X''

16. Develop -5 into a series
x^ + X

Ans. X*— x' + x''— x^ + X®— x' + &c.

xV— into a series.

Ans. X + x'— x* + X'— X® + x^— x^ + &c.

x^ + x^ + X' .—

5

into a series.
x^ + X

Ans. 1 + cc''— x^ + 2x''— 2x^ + 2x«— 2x' + 2x^— 2x' + &c.

velop —;— :—-—
-. into a series.

X + x^ + x^ + x"

Ans. l — x" + x^— x' + 2x«— 3x" + 2x + x^_ 5x'".

, x^* + 3x2 -\

velop ~
x^ -+

The process fails. Why

X* -{. x^ 4- x^
17. Develop

'

^ ^— into a series

X 4- x^ 4- x'' + X'
18. Develop j— into a series

OA -n 1
'?^' + 3x2 + 3x + 1 .

20. Develop into a series.
x'= + X Ans. <x>.
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1 _|_ 7.x -f 01? .

21. Develop —^

—

into a series.
^ 1 -{- X

Aus. 1 + 6a:— 5x^ + 5x^— 5x* + 5.r-'_ bx^ + &c.

r^ a^
22. Develop '- -.

X — a A71S. x -\- a.

a'^ a^ .

23. Develop ^ into a series.

SC-* -f x~^ + 2 .

24. Develop ^ 1^
into a series.

Ans. 2 — x-' + 2x~'— 2x-^ + 2x-'— 2a;-"' + &c.

Make x~^ = z. Develop, and replace z by x~'^.

Remarhs.

357. It will be observed that, in most of the preceding examples, any

term of the series after a certain number from the left, can be formed

from the term immediately preceding, or from two or more preceding

terms, according to some fixed law. Thus, in Example 2, every alter-

nate term of the series is formed from that which precedes it, by multi-

plying by — .T. The series in 5 and 6 are formed in the same way, the

multipliers, or all the terms, being x~'^ and x\. In 7, every term after

the second is formed from that which precedes it, by multiplying by 2x.

In 8, we may regard the constant multiplier as — cc, and omit every

alternate set of two terms. In 9, the multiplier may be regarded as

— x, and, when three terms occur togethei*, these are omitted. In 11

and 16, the multiplier is — x. In 12, the multiplier, for all terms after

the second, is — \x. In 13, the multiplier is x~'^y. In 17, the con-

stant multiplier, after the second term, is — x. In 18, the multiplier,

after the fourth term, is — x. In 19, there is no law of formation.

When the terms of a development are formed from those which pre-

cede according to some fixed law, the development is called a recurring

series. Multiplication is not the only mode of forming the succeeding

terms; sometimes they are formed by addition or subtraction, and even

by a combination of two of these methods. Thus, ; ^ —^

expanded, becomes 1 + a; + 2^^ 4- 4x^ + Ix^ -\- 13a;^ -|- 24x« + &c.
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The literal parts are formed by multiplying by x, the first two terms have

the same coefficient, and each succeeding coefficient is equal to the sum of

1 4- 2a;
the three which precede it, &c. Again,

^
^^——

^ = 1 + 3a; + 4x*

+ Ix" + lla=^ + 18a;5 + 29:r« + 47x^ + &c., in which the coeffi-

cients after the second are equal to the sum of the two preceding

coefficients.

PARTICULAR CASES.

358. A fraction involving irrational monomials may be treated as in

the following example.

Required, the development of -^ ^. Let x = z^. Then, ai =

2^, x'l = z"^, z ^ xl. Then, the fraction becomes ~,

3, and, by the

method of undetermined coefficients, .j . = A + Bz + Csr^ 4- Ds'
1 — 2r

+ Ez^ + Fs^ + &c. From which we get A= 0, B =r 0, C = 0,

D = 1, E = — 1, F == 0, G = 1, H = — 1, &c. Hence, ^^=4

z=^— z'^ -\- z^— z' +-^— 2'° 4- &c, and, by replacing z by its value,

we have \ ^xl— | -\- x— x]. + a-| — a-J + &c.
i — x^

Since all examples of the same kind may be treated in the same way,

we derive the

RULE.

Place the variable equal to a new variable, affected with an expo-

nent equal to the least common multiple of the denominators of the

exponents of the old variables. Develop the neto fraction, and replace

the neio variable by its vahie in terms of the old.

1, Expand -y ^ into a series.

Ans. x\— xf 4- ^g — ^1 4- &c.

2. Expand ' * ^^
. Ans. x\ — a;l + x | — x% + &c.

1 4- a;
b b 4
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859. Fractions involving parentheses, differing only in their expo-

nents, may be treated as the following.

Required, the development of

Let 1 + X = z^. Then, ^^ , ^, ^-,
, ^ = -, which, when

(l+aOi — (1 +:r)-

X _ ^'— 1

developed, gives z + z^ + z'^ + z* -\- &c. Now, replace z by its value,

andwehave
^^_^ ^^,^^^_^^^

= (1 + ^)J + (1 + .)> -f

(1 + cc)i + (1 + ^y + &c.

RULE.

Place the common parenthesis equal to a Jietv variable, raised to a

power deviated hy the least common multiple of the denominators of the

p>arentlieses, and proceed as hefore.

EXAMPLES.

1. Expand -^ ^-

—

^-—^ ^J^to a series.
{l — x)}^ — {l— xy\

Ans. (1 — x)i + (1 — x)\ + (1— xf + (1 — X) ] +&C.

2- Expand ^_^^_^, into a series.

Ans. (1— a;)f— (1—x)+(l— x)--4—(1—a-)-|+(l— a;)-2— &c.

m

Expressions of the form, ( —j—7-) ,
iiiay be expanded by placing

a— bx = 2°, deducing the value of a -f bx, and proceeding as before.

Take, (l^^\^. Place, 1 — x = z'. Then, x = 1— z^, and
'\1 + x/

'

, XT /l—X\i Z^ Z^
l + x=2-z\ Hence, (^-^) = 43347^^76 = ^=4^+4-
Develop this fraction and replace z by its value (1 — cc) J.

360. It is obvious that there are an infinite number of irrational

expressions that may be developed by first making them rational in

terms of a new variable, expanding the new expression, and replacing

the new variable by its value iu terms of the old. So, there are an

infinite number of expressions, involving negative exponents, that may
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be expanded by substituting, for the old variable, a new variable affected

with a positive exponent, and proceeding as before. Thus, let it be

required to expand -^j ^. Let x~'^ = z. Then, x~*= z^. Hence,

jj-^ + x-'— x-' + x-"'— x-''+&c.

There are many expressions, however, involving negative and frac-

tional exponents, that cannot be developed by the method of undeter-

mined coefficients.

DERIVATION.

361. When one quantity depends upon another for its value, it is

said to be a function of the quantity upon which it depends. The

dependent quantity is the function, and that upon which it depends is

called the variable. Thus, in the equation, y = 2x, y is the function

and X the variable, because, by changing the value of x, y may be made

to have any system of values. Thus, when a;= 0, *, 1, 2, 3, &c
j

y=0, 1,2,4, 0, &c., it is evident that, in every single equation involving

two unknown quantities, there is a function and variable. Either of the

unknown quantities may be assumed at pleasure as the function, because

both unknown quantities are mutually dependent upon each other. But

it is usual to regard that unknown quantity as the function, with refer-

ence to which the equation has been solved. If the equation, y = 2a",

is solved with respect to a;, we have a; = -^. Then, x is the function
a

and y the variable, and, by assuming arbitrary values for y, x may be

made to have an infinite system of values. The most general form of a

solved equation of the first degree with two unknown quantities is, y =
ax -f b. In this, a and b are called constants, because their values

undergo no change. It is plain that y depends for its value upon x, a,

and b, but, as its value only changes with x (since x is the only variable),

7j is called a function of x only. If we have a single equation involving

three unknown quantities, any one of these unknown quantities is a

function of the other two.

If we have y = ox, ov y = ax + b, and x — viz, or x = viz -f v.
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we call y an explicit fuuetion of x, and an implicit function of z,

because y directly depends upon x for its value, and indirectly upon z.

It is plain that we may have explicit functions of any number of

variables, and, also, implicit functions of any number of variables. We
will, however, confine ourselves to explicit functions of single variables.

If we take the equation, y = ax + h, and attribute to x arbitrary

values, 0, 1, 2, 3, 4, &c., and call the corresponding values of y, y, y',

y", y"', &c., we will have y = h, y' = a + h, y" =2a -\- b, y"= 3a

+ h. Then, y'— y= a, y"— ?/' = «, y'"— y" = a, &c. That is,

the difierence between any two consecutive states of the function is

constant. This constant increase of the state of the function is called

the differential or derivative of the function. It is evident that, when

the function and variable are both linear, that is, both of the first

degree, the difference between two consecutive states of the function

will always be constant, and then will be truly the derivative of the

function. Thus, take the equation, y =: 2x -\- 2, and let x have the

constant increment J, beginning at ; that is, let a; = 0, + i, J + ^,

1 + i^j I2 + J; then the difference between two consecutive values of

y will always be constant. For, we have y = 2, y' =zl + 2 = 3,

y" = 2 + 2 = 4, y'" = 3 + 2= 5, &e., and, consequently, y'— y =
l=y"—y'= y'"— y", &c.

But, when the variable is of the second degree, and the function of

the first, the difference between two consecutive states of the function,

corresponding to constant increments of the variable, will not be con-

stant. Thus, take the equation, y= x^, and let x have the constant

increment, 1, beginning at zero. Then, y= 0, y' =zl, y"= 4, y'"= 9,

&c., and y'—^=1? y" — y' =^^j 1/'"—y = 5. The student of

geometry will understand that there ought to be no constant increment

to the function, corresponding to a constant increment to the variable in

the equation, y =^ 0?. For, y expresses the surface of a square of which

X is the side, and the surface of course increases more rapidly than the

side. If the function is of the first degree, and the variable of the

third, it will be seen that the difference between two consecutive states

of the fuuetion varies still more widely from a constant. The function

and variable must then both be of the first degree, in order that the

difference between two consecutive states of the function may be con-

stant. But, to return to the illustration of the square, it is plain that,

if the constant increment to the side of the square was indefinitely

small, the difference between two consecutive states of the function,

which represents the increment of the fuuetion, would be so nearly con-
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stant that it might be regarded as constant. Suppose y= a:^ and that

x=^\ foot. Then the surface of the square is one square foot. Now,

suppose the side of the square to receive the constant increment,

1 2 1

j-^ part of a foot. Then, y == 1, y = 1 + ^-^-^ + ^j^^^,
4 4 2 1

y" = ^^ 10000 + (TOOOO/'
*^''- ^^^°' •^'"^ "^

10000 + (10000?'

2 2
?/" — 7/ = 1 -„. And we see that the diflPerence between
^ ^ 10000 ^ (10000)''

the second and first states differs only from the difference between the

third and second, by jq^oo-

Upon this principle the derivative or increment of a function is

found. It is the difference between two consecutive states of the

function, when these states are indefinitely near to each other, and it

expresses the increment of the function. The word increment is used

in its algebraic sense. When any state of the function is less than the

preceding, the derivative is truly a decrement.

To find the derivative of the function, y = a-^, let h represent the

infinitely small constant increment to x. Then, y= x^, y'= (x + h)^

= x"^ + 2x7* + h^, and y' — y =^ 2xh -f h^. Now, since h is infinitely

small by hypothesis, h^ will be an infinitely small quantity of the second

order, and may therefore be neglected. Thus, -z—rrp— is very small,
' •' ° '1 million

•'

but -rz, 777^—r% is much smaller. Now, by making h indefinitely small,
(1 million/ 7 .; o J ?

we have taken the states indefinitely near to each other, and, conse-

quently, y'— y is the derivative of y= x?. Hence, the derivative of

0^ is 2x7t. It is usual to represent h the increment of the function by

dx, read differential of x. The derivative of the square of any variable

function is then twice the first power of the variable into the differential

of the variable. The differential coefficient of a function is the

differential of the function divided by the increment of the variable,

and is generally expressed by '^——'-
. In the preceding example the

differential coefficient of x^ is 2.r ; and, in general, knowing the

differential of the function, we get the dift'erential coefficient by dividing

by the increment or differential of the variable ; and, conversely, we get

the differential of the function from the differential coefficient, by mul-

tiplying by the differential of the variable. It will be seen that, when

30
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wc make h = 0, or indefinitely small, that the differential coefficient

assumes the form of ^, for then i/' = y.

To find the differential coefficient, we have the following

RULE.

Give to the variahle a varialle increment, h, and find the neiv state

of the function. Take the difference between the new and old states of

the function, and reject the terms involving the higher powers of the in-

crement, as heing infinitely small quantities of the second, third, &c.,

orders. Next change h into dx, dy, or dz, &c., according as the va-

riahle is X, J, or z, &c. We then have the differential of the function.

Divide the differential of the function hy the differential of the va-

riahle, and we have the differential coefficient.

Required the differential coefficient of the function, y = x^. By the

rule, we have y' = (x + hy = x^ + 3x-/i + oh^x + 7/,l Hence,

//'— y = Sx^h + Sh^x -}- A" = SxVi, or Sx^dx, when h is infinitely

small. Therefore,
^~"~

'^ = 3.x-l

h

Newton regarded all algebraic expressions as the representatives of

lines, surfaces, or solids; and supposed lines, whether straight or curved,

to be generated by the flowing of points according to fixed laws, surfaces

to be generated by the flowing of lines, and solids to be generated by

the flowing of surfaces. Thus, a point, moving or flowing according to

the law that it shall always be in the same plane, and at the same dis-

tance from a point, will generate the circumference of a circle; and a

straight line, flowing with the two conditions of being constantly parallel

to, and at the same distance from a fixed line, will generate the surface

of a cylinder. A straight line flowing in the same direction with the

condition that, in all its positions it shall continue parallel to itself in

its first position, will generate a plane. One line revolving around

another, to which it is perpendicular, _L, will generate the surface of a

circle. A flowing square will generate a cube; a flowing semicircle, a

sphere. Newton regarded the increment of the function as expressing

the uniform rate of increase of the function, and called it fiuxion.

The thing generated he c^W^di fluent. It is evident that the fluxion

does not express the uniform rate of increase, except when the states

are taken indefinitely near to each other. Suppose a cannon-ball to

leave the mouth of a piece with a velocity of 2000 feet per second, and

that this velocity is reduced to 1200 feet per second at the end of the
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third second. It is plain, that the diiFerence between the spaces passed

over in any two consecutive instants of time will not be equal to the

difference between the distances passed over in any other two consecu-

tive instants, unless those instants are inappreciably small. But, for

the millionth part of a second, the velocity might be regarded as con-

stant. If the instant was then taken thus small, the difference between

the spaces in two consecutive instants would be constant.

The differential of the function has, in accordance with the New-

tonian theory, been defined to be the uniform rate of increase or

decrease of the function. The differential of a constant then, must be

zero, since a constant admits of neither increase or decrease.

Theorem I.

362. The differential of the algebraic sum of any number of func-

tions of the same variable is equal to the algebraic sum of their diffe-

rentials.

Let ?/=-±iudczvzt:w±z; «, v, lo, and z, being functions of the

same variable, x. Give to the variable a variable increment, h, and

call the new states of the function «', v', xo', and z. Then y = «' =h

v' zh w' ± z', and y'— 1/ = u'— m =fc (v'— v) ± (ic'— ic)± (/-^ z)

as enunciated, since u'— « is the differential of m, v'— v, the diffe-

rential of V. A shorter notation is dy = du rt dv rfc: dw ± dz, and is

read differential of y, equal to the differential of ?<, plus or minus the

differential of r, &c.

Let y = ax^ + ex. Then, dy = 2axdx -f- cdx.

Theorem II.

363. The differential of the product of a constant by a variable, is

equal to the product of the constant by the differential of the variable.

Let y = Ax. Then, dy = Adx. For, y' = A (x -{- h), and
y'—y = Ah, or dy = Adx.

Let u = my. Then, du = mdy.

Theorem III.

364. The differential coeflacient of the power of a quantity is equal

to the exponent of the power into the quantity affected with an expo-

nent less by unity than the primitive exponent.
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Lety = a;". Then, ^^^- = «x"-'.

For, give to x a variable increment, h ; then, y' = (x { hy, and

y— ?/ (a? + A) "— a;" (x + 7i) °— x" «" — x"

h ~ h ~ (x + A) — X ~ a — a;
' "^ -P

'

iuij X + 7t by a. But, = «°~' + «°~^j:; + (/""'x^ + a^'^x^ +
a— X

&c., on to n terms. Now, when h is made indefinitely small, x is equal

to a, the first member of the equation in y then becomes equal to the

diflferential coefficient, and the second member becomes a"~' -f a"~' +
«"~' + &c. = ««""', as enunciated.

Hence, we have --- = ??«""', and, consequently, dy = na^~hlx. The

differential, as well as the differential coefficient of a powei-, is then

known.

Theorem IV.

365. The differential of the product of two functions of the same

variable is equal to the sum of the products which arise from multiply-

ing each function by the differential of the other function.

Let y =1 uv. Then dy= udv •-(- vdu, in which u and v arc both

functions of the same variable, x; the new state of the function is

n'= u + du, and the new state of the function v'= v + dv. Hence,

y'= u'v'= (u -\- du) (v + dv) ^uv -{• udv + vdu + diidv. But,

since du and dv are indefinitely small, their product, dudv, is an in-

definitely small quantity of the second order, and may therefore be

neglected. Hence, y'= uv + udv + vdu, and y'— y, or dy= udv

+ vdu, as enunciated.

Corollary.

366. 1st. The differential of the product of any number of functions of

the same variable is equal to the sum of the products which arise from

multiplying the differential of each function by the product of the other

functions.

Let y = swuz, in which s, w, %i, and z are functions of the same

variable, z. Then, dy= icuzds + suzdw -f swzdu -f sicudz.

To show this, we will first get the differential of the product of three

variables. Let y= szv. Make sz = u. Then y = uv, and, from what

has just been shown, dy = udv + vdu= szdv -f vd (sz) = szdv -f-

V (sdz -\- zds)= szdv -f vsdz -\- vzds, as enunciated.
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Now, knowing the differential of the product of three variable func-

tions, we can readily pass to that of four. For, let y = swuz. Then,

Ji/ z= svmJz + zd (^Rwu) = sicuch -f z (sic(7v -f sudw + icuds) = swudz

+ zswdu -\- zsudw + zicuds. And, it is plain that the same process can

be extended to the product of any number of functions.

2d. Since the differential of the product of Av is Adv -f vdA =
Adv, A being a constant, we have Theorem II. demonstrated in

another way.

Theorem V.

367. The differential of a fraction is the denominator into the diffe-

rential of the numerator, minus the numerator into the differential of

the denominator, divided by the square of the denominator.

Let y = — , s and v bciuu; both functions of .'-. Then, di/ =
V

vds— sdv

For, since y = —, we have no = s ; and yv being equal to s, the iu-
V

crement of yv must be equal to the increment of s. That is, d (yv) =
ds ydr ds sdv vds— sdv

ds, or ydv + vdy = as, or i/y = ^ — ' = ~ = ,

as enunciated. In the expression, "^— , we substituted for y its value, —

,

V V

and then reduced the two fractions to a common denominator.

CoroUary.

368. 1st. When the denominator is constant, dv is zero, and dy =3

vds— sdo vds ds
,

. ,.„ •
1 p 1= —-T- = — , equal to the dmerential ot the numerator

v^ v^ V

divided by the constant denominator. "We might arrive at this result

s Is
in another way, for, when v = a constant, — may be written — , and,

1 Is
since — is constant, the differential of — will, by Theorem II., be

V '

V

Ids ds
'

di

30

, or
dv
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369. 2(1. When the numerator is constant, ds = 0, and dy =
vds— sdr - ,

ado . ,

, becomes c/y = — —2}^ negative result.

This ought to be so, for, when the numerator is constant and the

denominator variable, any increment to the variable, x, upon which v

depends, will decrease 1/ ; and, consequently, cTy, which expresses the

algebraic increment of 7/, is truly a decrement, and ought, therefore, to

have the negative sign. In the case supposed, y is a decreasing function

of the variable, x, and we see that the differential of a decreasing

function is negative.

We are now prepared to find the differential of any function affected

with any exponent, whether positive or negative, fractional or entire.

Theorem VI.

370. The differential of a quantity affected with any exponent, is

the product arising from multiplying the exponent of the power into

the quantity affected with an exponent algebraically less by unity than

the primitive exponent, into the differential of the variable.

We will first suppose the quantity to be affected with a negative

exponent. Let y = r~° = —^. Then, by Corollary 2d, of the last

Theorem, dy = ^^^ = -^ = — nv~''~\ as enunciated.

Next, suppose the exponent to be a positive fraction, >/ z=v\ Then,

7/ r= \/v'', or 1/' = v'. And, taking the increments of both members,

we have, by Theorem III., since r and s are positive and entire,

, , -. rv^~^dv r if~^dv r v^~'dv
.«?/-' dy = rv'-h/i', or di/ = j—= — X ——7- = — X —

r r^~^dv r v~^dv r — r -i_i

V ' v~
enunciated.

Finally, suppose y= v~ ^ we will find by proceeding exactly in the

:?ame way as when the exponent is a positive fraction, dy ^= - x
s

V » dv, as enunciated.
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Corollary.

370. 1st. The differential of any parenthetical expression is equal to

the exponent of the parenthesis into the parenthesis, raised to a power

algebraically less by unity than at first, into the differential of the

quantity within the parenthesis.

This is evident, since we may represent the quantity within the

parenthesis by a single variable, v. The parenthetical expression will

then assume the form of v", and may be differential according to the

rale.

Let y = (a + hx^y, place a -\- hx^ = /•, then y = z", and dy =
nv^-klv = n (a + hx^y'-\l (a + hx^) = n (a + bx^)"^^ 2l)xdx =
2bn (a + hx^y-^xdx.

372. 2d The differential of a radical expression is equal to the diffe-

rential of the quantity under the radical, divided by the index of the

radical into the radical raised to a power algebraically less by unity than

the primitive index. This is merely a particular case of the preceding,

for a radical is nothing more than a parenthetical expression affected

with a fractional exponent, the numerator of the fraction being unity.

Let -yU be the radical; this is equal to v~, and its differential then

must be — r^"' dv = — v~^ dv = —j^ = — , as enunciated.
n n nv— „ ;/

i^n-i'

"When n = 2, the radical is of the second degree, and the expression

becomes—=, that is, the differential of a radical of the second decree

is equal to the differential of the quantity under the radical sign divided

by twice the radical.

EXAMPLES.

1. Required the derivative oi y = l/a -\- x^.

. ^ 2xdx
Ans. dy

Si/(a + xy
2. Required the derivative of y = v'" + bx'-

. -, 2bxdx
Ans. dy

2^a + bx^

3. Required the derivative of "^ ax + ix°.

(a + 9iZ»x°~') dx
Ans. -

m'^(ax -f ftx")™-'
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GENERAL EXAMPLES.

1. Required the derivative of « + ix— cx^ + mx^.

Alls, (h— 2cx + omx^) (h\

2. Required the derivative of —

.

^ cx^hilx— (a -f Jjx) 2cxdx
Ans. —

3. Required the derivative of cc" (a + Ixy.

Ans. m(a + bxyx.'^~^ dx + nx"' (a -f ia;)""' hdx.

BINOMIAL FORMULA.
373. By actual muhiplicatiou we can readily find

(a + xf = a'' 4- 2ax + o:%

(a + xf = a^ + Sa\v + Sax'' + x%

(a + xy= a* + 4a''a; + QaV + Ao'x^ + x\

We observe a simple law in" regard to the exponents in these three

developments. The exponent of a in the first term is the power of

the binomial, and this exponent goes on decreasing by unity unto the

last term, in which it is zero. For, x^, x^, and x* may be written, a^x^,

a".*', and a°x*. The exponent of x is zero in the first term, and goes

on increasing to the last term, in which it is equal to the power of the

binomial. With regard to the coefficients, we observe that the coeffi-

cients of the extreme terms are unity, that the coefficient of the second

term is the degree of the binomial, and that the coefficient of the third

term can be found by multiplying the coefficient of the second term by

the exponent of a in that term, and dividing by the number of terras

which precede the required term. Thus, in the development of

(a + xy, to find this coefficient, multiply 4, the coefficient of the second

term, by 3, the exponent of o in that term, and divide by 2, the number

of terms which precede the required term, the quotient 6 is the co-

efficient of the third term. So, to find the coefficient of the fourth term

of (a + xy, multiply G, the coefficient of the third term, by 2, the ex-

ponent of a in that term, and divide the product, 12, by 3, the number
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of terms whicli precede the required term, the quotient, 4, is the co-

efficient of the fourth term. This remarkable law in regard to the co-

efficients, holds true even for the second and last terms.

We observe, furthermore, that the sum of the exponents of a and x

in every term is equal to the exponents of the binomial and that the

coefficients, at equal distances from the extremes, are equal.

Newton showed that the law in regard to the exponents and

coefficients was general for any binomial of the form (a + x)"", and

that we would have (a + x)'" = a" + ma'"-^x -i
^^ ^-^ \-

m (m— 1) (m— 2) a'^^x^

2T3
+ ^

DEMONSTRATION.

374. To demonstrate this useful and remarkable Theorem, let us

assume (a -f x)"'=A -f A'x -f A'V + A''^ + A'"x"' ; in which

m is taken positive and entire, and A', A", &c., independent of x.

Then, by the principle of undetermined coefficients, we have a right to

make a; = in both members of the assumed identical equation.

Making a: ^ 0, we have A = a".

It was shown that, when two functions of the same variable were ecjual,

that their diffiDreutials were equal. Hence, taking the derivations of

both members of the assumed equation, we have ?»(a + j)'"~hlx =
(zV + 2A"a; -f 3A'V -f &c.)'/^, or, dividing by (Jx, m(a + j-)"-' =
A' -f 2A"a; -f ^A"'x^ + &c. (N). Now, make x = 0, and we get,

ma"""' = A'. Again, taking the derivatives of both members of (N),

and dividing by dx, we get, m (m — 1) (a + a-)""^ = 2A" +

2.3. A"'x + &c. (P). Making x= 0,we have A"= "^ ("^— 1)
"""'

^

Again, taking the derivation of (P), dividing by dx, and making a: ^ 0,

there results A = —^
o o.

• -In hke manner, we can

find A"" = ^»0»'— 1)C» ' — -) ('« — 3)
^"-^

2.3.4
And A" will plainly be equal to

m (m— 1) (m— 2) .... (m— (m— 1) ) a"-" _

1.2.3.... {m— 2) (m — 1) m '

and, since the factors of the denominator are the same as those of the

numerator, only written in reverse order, we have A" = 1.
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Now, replace A, A', A", &c., by tlielr values iu the assumed

identical equation, and we have (a + x)- = d'" + ma'"-^ x +

m {m — 1) ff™""^ X- m (m — 1) (m — 2) n"'~^ x^

1.2
' 1.2.8

m (to— 1 ) («i— 2) . . . {m— n + 2) 0"--"+' x<^-'

1 . 2 . 3 . 4 . . . (n — 1)
"^ ^ •

The term,

m (m— 1) (:m— 2) . . . (»t— n + 2) an>-n+' x"-'

1 . 2 . 3 . . , (ri _ 1)
'

is called the n*"", or general term. An inspection of the formula will

show that the first factor of the numerator of the coefficient of a iu

any term is m, the next factor (m— 1), and so, on decreasing by unity,

unto the last factor, which is m, diminished by two less than the place

of the term. Thus, the last factor of the numerator of the coefiicient

of the 4tli term is (m— 2). So, the last factor of the numerator of

the coefficient of the n^^ term must be (m— n + 2). The denominator

of the coefficient of a, in any term, is always the continued product of

the natural numbers, from 1 up to one less than the place of the term.

Hence, the denominator of this coefficient in the n^^ term must be

1 . 2 . 3 . . . . (n— 1). In regard to the exponents, we see that a, in any

term, is always affected with the exponent of the binomial, diminished

by the number of the term less one, and the exponent of x, in any

term, is always one less than the place of the term. Hence, for the ?i*''

term, we have «"'-''+' a;"~'.

The binomial formula is usually written iu the ascending powers of «,

instead of x. To develop (x + «)" in the powers of a, it will be

necessary to regard a as the variable, and x as the constant, to make

a= in the successive steps of the operation. As we would obviously

obtain the same result, with the exception of an interchange of x and a,

we may at once write

,
VI (m — 1) .t'"~^ a^

(^x 4- <^'T = •^'" + '^^^ « H
—

I
—2—~~~ "^

TO (to— 1) (1^1— 2) X™-' a' TO (?»— 1) . . . (m— n + 2) cc°'-°+' a"- '

1.2.3
"^"

1 .2.3. . . (n— 1)

We will repeat the laws in regard to the exponents and coefficients.

1. The first letter of the binomial appears as the first term of the



BINOMIAL FORMULA. 359

development, affected with an exponent equal to tliat of the binomial,

and the exponents of this letter in the successive terms decrease by

unity unto the last term, where its exponent is zero. The exponent of

the second letter of the binomial is zero in the first teroLi of the develop-

ment, and one greater in each of the successive terms, and, in the last

terra is m, the exponent of the binomial.

2. The sum of the exponents of x and a, in every term of the

development, is equal to the exponent of the binomial. A simple in-

spection of the formula will show this.

3. The coefficient of the first term of the development is unity; that

of the second term is equal to the exponent of the binomial; that of the

third term is formed by multiplying the exponent of the first letter of

the second term by the coefficient of that letter, and dividing by one

less than the number denoting the place of this required term ; that of

the Ji*'' term is formed from the (/i— l)"* term, by multiplying together

the coefficient and exponent of the first letter of that term, and divi-

ding this product by {n— 1), that is, by one less than the number of

the required term.

4. There will always be «z + 1 terms in the development. For, we

get one term, a™, or of, without differentiating, and, since the exponent

of m is diminished by unity for each differentiation, it is plain that m
derivatives can be taken of (a + a:)", and, since we get a term of the

development by each derivation, we must have in all (m -f 1) terms.

5. The coefficients at equal distances from the extremes are equal.

For the developments of (a -\- xj" and (x + a)" must be identical,

differing only in the order of the terms; the first term of the develop-

ment of (a -j- a:)" being the last term of that of (x -\- «)"", the second

from the left of the development of (a + x)" being the second from

the right of that of {r, -f a)" , &c. Hence, the terms of the develop-

ment of (a -f a;)", taken in reverse order, will constitute the direct

development of (x -f- «)"• I*^ is plain, then, that the second term from

the left must have the same coefficient as the second term from the

right, the one being formed from a" in the same manner as the other

from a™, and so, in like manner, all the other coefficients at equal dis-

tances from the extremes must be equal.

6. The sum of the coefficients of the development of {x -f a)*" is

equal to the m^^ power of 2. For, if we make a- = 1 and o := 1 in

the equation, (x + a)™ = x"" -\- ^/i.r"""' a -\ ^^ z

—

-^ +
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m (m — ) (m — 2) x""'" a' ^ j v, -n j—^^ i~o—^^
.... a , the second nieinber will reduce

to the sura of tlic coefficients, and the first member will become 2"", and we

will have (1 + i)" = 2- = 1 + m + m (m- 1) +
^^'^On—l)(^m—2)

+ &c. We make x and a unity, in order to reduce the terms in the

second member to their coefficients; and, it is plain, that if x and a had

another value than unity, the second member would not be the sum

of the coefficients.

In accordance with the demonstration, the sum of the coefficients in

the development (x + of, ought to be 4 ; for, in this case, m = 2, and

(2)"" = (2)^ = 4. And, in the development of (x + a)^, m = 3, and

(2)"" = (2)^ = 8, which agrees with the fact. So, likewise, in the

development of (x -\- ay, m = 4, and (2)" = (2)'' = 16, which also

agrees with the fact.

FORMATION OF POWERS BY THE RULE.

375. Let it be required to find the development of (x -\- of by the

rule. The first term is x^, the second term has 5 for a coefficient, and

the exponent of x is one less in this term than in the preceding ; a

also enters to the zero power in the first term ; and, since the expo-

nents of a go on increasing by unity, a must enter to the first power in

the second term. Hence, the second term is 5x'*a. The coefficient of

x in the third term is formed by multiplying 5, the coefficient of x in

the second term, by 4, its exponent, and dividing the product by 2,

5x4
the number of terms preceding the required term. Hence, —^— =10,

is the coefficient of the third term, and, from the law of the exponents,

X must enter to the third power, and a to the second power in the

third term. Hence, that term is lOx^a^ For the coefficient of x in

10 3
the fourth term, we have —^

— = 10, and the fourth term must be

10 . 2
lOx'^a". For the coefficient of the fifth term we have —-— — 5, and

that term itself must be 5xa''. For the coefficient of the sixth term

5 (1)
we have —=— = 1, and that term itself must be x^a\ or a'. For the

5

coefficient of the seventh term we have —^ = 0. 'Hence, there is no
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seventl> term. Then, the development of {x + a)* is x^ + ox*a +
lOx'a^ + lOx^a^ + 5xa* + o', and we see that the sum of the coeffi-

cients is equal to (2)^ = 32, and that the sum of the exponents of x and

a in each term is 5.

The preceding development might have been obtained directly from

, ^ , , . , m(m— l).c'"~V ,,

the general formula, (^x+ a) = a;" -f mx^ 'a -\ — h &c.,

by making m = 5. But the above process is generally shorter when

m is positive and entire.

DEVELOPiMENT OF [x— a)'".

376. The development of (x— a)" may be obtained in the same

way as that of (x + a)". But it may be gotten at once from the gene-

ral formula by changing + a into — a ; the terms involving the odd

powers of a will all be negative, and we will have (j:— a)° = af—
mx'"-ki + ^

^ .

^^
^

^ ^' g + ± a".

The last term will be positive when m is an even number, and nega-

tive when m is an odd number.

It will be seen that all the laws in regard to the development of

(x 4- a)" hold good in regard to the development of (x— a)", except

that the alternate terms must be affected with the negative sign, and

that the sum of the coefficients is zero.

A few examples will illustrate the use of the two formulas for the

development of (.x -f «)" and (x— a)".

EXAMPLES.

1. Required the sixth power of (.x + a).

Ans. x^ + Gx'a -f Idx'a'' + 20.x='a=' + 15x^a' -f Gxa' + a^.

For, m = G,m — l = 5, (vi— 2) = 4, «i— 8 = 3, m— 4t = 2,

„ , ^ ,
m (in — l)^"-^

wi — = 1. Hence, {x + a)"" = x'" + mx'"-^ -\ ^ -y--

-f- .... a™ becomes, in this case, {x+ ay=x^-\-Qx^ -i

'— a*

= x^ + Qx' -f 15xW -f a«.

2. Required the development of (x + ay.

Ans. cc"+ 7x^a + 2lx'a^+S6xW+S5xhi* + 21x^a^+ Ixa^ -f a?.

31
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o. Develop (.c + ay.

Ans. .x^+ 8x-^a+ 28.rV+5GxV+70.^V+56*V-f28.i-aH8xa'+a'.

4. Develop (x — af.

Ans. x^— Q,x^a + 15.xV— •ZQxht' + 15a;V— Qxa^ + a\

5. Develop (,r— o)'.

Ans. x'— nx^a+ 21.'r5a2— 35a;V+35:r'a^— 21a;2rt + ^Ixa^ — a\

6. Required the development of {x— a)".

Ans. x^— ^x^a + 36xV— 84xV + 126xV— 126a'V + 84xV
— 36a;V + 9xa« + a».

377. The binomial formula has been deduced upon the hypothesis

that the coefficients and exponents of x and a were unity, but it can

be applied to binomials in which these conditions are not fulfilled, by

substituting for the letters within the parenthesis other letters whose

coefficients and exponents are unity. Thus, to get the fifth power of

z^ + Zy", let z^ = X, and 3y/^ = a ; then, {z^- + ^iff = (« + aj = x'

-\-bx'^a + lOcc'a^ + lOx^a? + bxa'^ + a^, which, by substituting for x and

a their values, will be found equal z^° + Ibz^f -\- OO^y + 270^y +
^{)bzhf -f 243^'°.

In like manner, we may find the development of (nx^ -\- ra^)'" =
m (m— 1) r2«"'-=£cP'"--''a2^

jr.rP" + 7?ir?i'"-'.r'""-P«i + —^i ^-—^ 1- • r'"a'^"\ (A)

In this general formula, make x = 1, and a = 1 • the second mem-

ber will reduce to the sum of the coefficients of x, and the first member

will become (n -f i-)"". Hence, the sum of the coefficients of any bino-

mial develojnnent is equal to the m** power of the sum of the coefficients

within the 2}cirenthesis.

In accordance with this general formula, the sum of the coefficients

of the development of (2^ + oy^y ought to be equal to (4)^ = 1024;

and this agrees with the development above, for 1 + 15 + 90 + 270

+ 405 + 243 = 1024.

378. Formula (A) shows, moreover, that if the exponents of x and

a are equal, that is, p — q, the sum of the exponents of x and a in

each term of the development will p?n. Whenever, then, the exponents

ofs. and a arc equal in any binomial, the sum of the exp)onents of these

letters in each term of the development will be equal to the common ex-

ponent xoithin the 'parenthesis into the exponent of the poxoer to xohich

the binomial is to be raised.
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The two important laws just deduced from formula (A) are general

for all binomials. The second and sixth laws, observed to govern the

development of (x + a)", are but particular cases of the foregoing.

The binomial formula can be extended to polynomials, by representing

the polynomial by the algebraic sum of two letters. Thus, to obtain

the square of cc' + 4:X^— 8x— 8, represent x'^ -f 4:X? by x, and — Sx

— 8, by a. Then, (x» + Ax""— Sx— Sf = (x + of = x" + 2,ax

4- a^ = (by replacing x and a by their values), x® -f 8x*— 80x' +
l'28.c + 64. In like manner, to obtain the cube of x^ -\- 2x— 4,

let x" = X, and 2x— 4 = a; then, (x' + 2x— 4)' = (x + af= x"

4- 3x^a + 3a^x + a', which, by replacing x and a by their values,

becomes x« + 6x^— 40x' + 96x— 64.

GENERAL EXAMPLES.

1. Find the coefficient of the twelfth term of the development of

(.X + a'y, by means of the formula for the n^^ term.

m(m.— \)(m — 1)(m— Z) (m— i) (m— 5) (to— 6) (m— 7) (m— 8) (»i— 9) (m — 10
^^' 1X2X3X4X6X6X7X8X9X10X11

2, Find the twelfth term of the development of (x + a)^.

50 X 49 X 48 X 47 X 46 X 45 x 44 x 43 x 42 x 41 x 40a3V'
Ans.

1x2x3x4x5x6x7x8x9x10x11

3. Find the development of (x + a)^°.

Ans x^o + 20x'»a + lOOx'^a^ + 1140x'V + 4845x'V + 15504x%^

+38760x'V+77520x'V+ 125970x'V + 167960x"a«+ 184756xV
+ 167960xV' + 125970.rVt'2 + 77520x^a" + 38760x«a'* + 15504x^a'^

+ 4845x''a'« + 1140x='a'^ + 190x^a'« + 20xa'« + a^".

4. Find the development of (x^ + 2ax— Aa?y.

Ans. x^ + Qax^— 40o'x^ + 96alr — 64a«.

5. Find the 4th power of Sa^c— 2hd.

Ans. 81aV— 216aVifZ-f- 2lQa\%hP— maWiP + lU'd\

6. Find the cube of x^— 2x + 1

Ans. x«— 6x5 ^ i^.jA_ 20a;3 + 15x-— 6x + 1.

7. Required the coefficient of the sixth term of the development

of (x + ay.

Ans
7(7-1) (7-2) (7-3) (7-4) 7.x6.5x4x3_

1.2.3.4.5 ^1.2.3.4.5
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DEMONSTRATION OF THE BINOMIAL FORMULA FOR ANY
EXPONENT.

379. 1. Let m be supposed negative and entire, then (x + a)"" =

— , which, hy ae-
{x + a)'" .x" + ?7ij"~'a -f m(m— l)x^~hi'^ +

tually performing the division, will be found equal to x~"'— mx~"^^a—
m(— m — l'),^-'""^ m( — m — 1) ( — m — 2')x-'^-^a'^

rr2 1.2.3 . . .
±

Px~^'"«"', &c. Hence, we have the same law of formation as when the

exponent is positive and entire. We might demonstrate this truth more

rigorously by assuming (x + a)""" = A + A'a + A"a^ + A."'a^, &.C.,

and proceeding just as we did when m was positive and entire, regard-

ing a as the variable. But it is not necessary to repeat the operation.

We have a right to assume the exponents of a to be positive and entire

in all the terms of the development; because, if we expand any frac-

tion whose numerator is a constant, and the first term of whose deno-

minator is a constant, all the exponents of the variable will be positive

and entire in the development.

2. When m is positive and fractionah Let m = — , and assume
q

(a +x)^ = A + A'x + A"x' + M"x^ A-^r-'CP). Make ^= 0,

p_

and we have A = as.. Taking the derivatives of both members of

(P), and dividing by dx, we have —(a + x')'i = A' -f 2A"a; -f

3A"V -V &c. (2). Making a; = 0, we get A' = ^a~'- From (2),

there results U^— l\ {a -f 3;)Z~'= 2A" -f 2 . ^A"'x + &c. (R).
q\q J

Making x = 0, we get A" = —(—— l)-^^ ^^^^^ (^)' ^^^^^'^ ^^"

suits ^{^— l\{^— 2\ (a + .t)^~' = 2 . 3A'" -f &c. From which,

2 .3
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Continuing the process and replacing the constants, A, A', &c., by

2 j: « 1_ 1

their values, equation (P) becomes (a -f .r) i = a i + —a i x -\-

il(^_l)„^V+ii(ii-l)(^-2U-V ±PaT-»-':c-V
q^q ' q\q / \q /

rr2 1.2.3

DEVELOPMENT OF BINOMIALS AFFECTED WITH NEGATIVE
AND FRACTIONAL EXPONENTS.

380. When m, the exponent of the parenthesis, (x -\- dy°, is posi-

tive and entire, it is evident that successive differentiation will even-

tually reduce that exponent to zero, and then the next differential will

be zero. And, since the constants, A, A', &c., of the assumed develop-

ment, have been determined by the successive differentiation of

(x + ay, it is plain that the development will terminate. But, when

the exponent of the parenthesis is negative or fractional, successive

differentiation can never reduce it to zero, and, therefore, an infinite

number of constants can be determined in the equation, (j: -\- a)~'", or,

p.

{x + a)^. . = A+ A'x + A"x' + A'"x' + &c. The series will then

never terminate.

EXAMPLES.

1. Develop
:j

= 0- — ^)~' ^°*-*' ^ series.

Ans. 1 -^ X + x^ + x'^ + x* -\- x^ -{ &c.

Make m = — 1, 1 = a", and — x = a in the formula (x + a)~° =

1 . 2

2. Develop = into a series.
^ 1 + a-

Ans. 1 — X + X-— x^ + x*— x^ -\-&c.

1 _j_ 7^ -L a;2

3. Develop —:,
^ = (1 -\- 7x -\- x^ (1 -{- a;)-' into a series.

I -\- X

Ans. 1 + 6x — 5x^ + 5x^— 5x' -f 5x'— &c.

4. Develop into a series.
a -{- X

A 1 X , X' X^ X* ^
,

a a^ o? a* a*

31*
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6. Develop .y/l + X into a scries.

Ans. =t
a; X- . x^/-, ,
X X- X" p V

6. Develop ^x + 1 into a series.

Ans. ±( /—. —____^^ zzz— &c.y

7. Develop ^/2 = ^1 + 1 into a series.

Ms. ±(l+i_i +Jg_-5^ + &c.).

8. Develop ^/5 = v/4 + 1 into a series.

Ans. -t(2 + i — J^+rh— &c.).

9. Develop (^Ji* + ?i'')'' into a series.

^?is. ± (m + I m-V— gS^m-'ji^ + _|gm-"w'^— &c.).

10. Develop (a + x)* into a series.

11. Develop (m^ + rr") into a series.

12. Develop (1 + cc^)^ into a series.

, 01? x^ 5x® .,

^'''- i + T-y+sT-'-^'^-

13. Develop - into a series.

^/7l2 + x"

^ns. ± -(1- ^, + g-,- le^^e
+ 728^3

- &c.
I

14. Develop 4/a + a; into a series.

,_ 1 X 2 cc'' 6 :e^ 21 a;" .

15. Develop 4/1 + ^= into a series.

, , la; 2x^ 6a;' 21x* , .

^'''- ^+-5-25+125-625 +*'•
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16. Develop v/1 — ^ ^^^^ ^ series.

17. Develop 1/2 into a series.

Ans. 1 + I- ^+ -,&^- ^-, + &c.

CONSEQUENCES OF THE BINOMIAL FORMULA— SQUARE OF
ANY POLYNOMIAL.

381. We have seen that (a-{-by=a'' + 2ab + b% that is, the

square of a binomial, is equal to the sum of the squares of its two terms,

plus the double product of those terms. To find the square of a tri-

nomial ; a + b -\- c, let a + b = s. Then, (a + i + c)^ = (s + c)* =
s2 + 2sc + c'^^a + by +2c(a + b) + (? = ct" + i^ + c^ + 2ca -(-

2cb + 2ab; that is, the square of a trinomial is equal to the sum of the

squares of its three terms, plus the double product of these terms taken

two and two. To find the square of a polynomial of four terms, a -{-b

+ c + (7, let a + t + c = s' Then, (ii ^ b -\- c \- df = (s' + dj
= s'2 + 2.i'il+ rp = a' + b' + c"" + (P + 2r/a + 2db + 2dc + 2ca +
2cb -\- 2(ib ; that is, equal to the sum of the squares of all its terms, plus

the double product of these terms taken two and two. Now, it is evi-

dent that the same law will hold good for the square of a polynomial

composed of five terms. For this square is composed of the square of

the first four terms plus the square of the fifth term, plus the double

product of the fifth term by the sum of the first four terms. And,

since the square of the first four terms will give the sum of the squares

of all these terms, plus the double product of these terms, taken two

and two, it is evident that, when the double product of the fifth term

by the sum of the other four, is added to the other double products,

we will have the double product of all the terms, taken two and two

;

and it is plain, moreover, that when the square of the fifth term is

added to the sum of the squares of the other four terms, that we will

have the sum of the squares of all the terms. The law is then true for

five terms, and it is plain that the same reasoning can be extended to

sis, seven, and any number of terms. Hence, we conclude, that the

square of any polynomial is equal to the sum of the squares of all the

terms, plus the double product of all the terms, taken two and tico.
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1. Kequired the square oi a -\- b + c -\- d -i- e.

Ans. a' + h"^ + c' + cl? + e^ -f 2ah + 2ac ^- 2ad + 2«e + 2hc +
Ihd + 2he + 2cd + 2ce + 2dc.

2, Required the square oi a -{- h -\- c -{• d -{- e -\- f.

Ans. a^ + Z.2 + c^ + d' -{-c' +f^ + 2ah + 2ac + 2ad + 2ae +
2rr/+ 2hc + 2M + 2&e + 2//+ 2cf7 + 2ce+ 2c/+ 2c?e+ 2d/+2cf.

CUBE OF ANY POLYNOMIAL.

382. The cube of (a + &), is a? + Sa^i + 3a6^ + h\

To fiud the cube of a + i 4- c, let a + hz= s. Then, (a + 6 + cf

=z (s + c)'= s^ + 3s2c + 3sc^ + c«= a^ + ?y^ + c' + ^a?h + Sa^c +
36^c + 3c^a + 3c^6 + Qahc ; that is, the cube of a trinomial is com-

posed of the sum of the cubes of its three terms, plus the sum of the

products arising from multiplying three times the square of each term

into the first power of the other terms, plus six times the product of

all the terms, taken three and three.

By pursuing precisely the same course of reasoning that we have

already employed, it can easily be shown that the law is general for any

polynomial.

EXAMPLES.

1. Required the cube of « + & + c + d.

Ans. a^ + P + c" + d^ + 3a^6 + ^ah -f 2,ahl + U^a + Wc +
Wd + 3c^a + 3c^6 + 3A? + M^a + M^h + M^c + Qahc + Qahd +
f\nr/7 _L (\Ti/^i7Qacd + Qbcd,
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EXTRACTION OF THE Xth ROOT OF WHOLE NUMBERS AND
POLYNOMIALS.

383. The most important consequence of the binomial formula is,

that we are enabled by it to extract high roots of whole numbers and

polynomials. We will begin with the simplest case, the extraction of

the «" root of whole numbers.

EXTRACTION OF THE Xih ROOT OF WHOLE NUMBERS.

Let a represent the tens, and b the units of the required root. Then,

the given number will be (a + />)", and from the binomial formula wo

have

(a+iy= a- + na--^b+ ^

^ ^
+^ tV^S^ + '-^'''-

That is, a number, whose n^^ root is composed of tens and units, is

made up of the ??<' power of the tens, plus n times the (it— 1)"" power

of the tens into the first power of the units, plus, &c.

It is evident that the Jt" power of the tens will give, at least, ?* + 1

figures, therefore, the »*» root of the tens cannot be sought in the 7i

right hand figures. These must, therefore, be cut off from the right.

We next seek the greatest n^^ root contained in the left hand period,

and, when we have found it, we will have a of the formula. Raise the

root found to the Ji*' power, and subtract this power from the left hand

period. The remainder will correspond to na^~^h + — -^—^~^ +
kc, of the formula. The appi-oximate divisor to find h (the unit of

xi x^ • n I mi X T • • „ 1 " ("— V)n'^^h
the root) is na""'. The true divisor is ;ia°~' + -^=—=—-^ +
n (n _ 1) (n — 2)«"-^i=

, , , , , •
,

'
^'

,

1~9—

5

1 ^^ '
"'^^> ^^ '' ^^ unknown, we can only use

the approximate divisor. The n—1 figures, on the right of the remainder,

must be separated from the other figures, because n times the (n— 1)""

power of the tens will give, at least, n figures. Dividing the period on

the left by the approximate divisor, we get the units of the root, or, gene-

rally, a number greater than the units, because our divisor is too small.

It is plain that the number of ternis rejected when using the approximate

divisor, depends upon the number of units in n, and that the value of

each term depends mainly upon a. When, therefore, n and a are both

large, or when one only is large, the approxiinate divisor is very consider-

ably too small, and the quotient, therefore, will be too great. Raise the

Y
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two figures of the root found to the «*' power, and compare the result

with the given number; if it be greater than this number, the last figure

of the root must be reduced by one, or more. Let us illustrate by an

example.

Required the fifth root of 33554432.

885 54432 I 32

243
I

«a»-' = 5 X 81 = 405 92 "54432

We began by cutting off the five right hand figures. The next step

was to find 3, the greatest fifth root contained in 335, the left hand

period. Next, the approximate divisor, 405, was formed, and this was

found to enter twice in the left hand period of the remainder, after

subtracting the n^^ power of the tens from the given number. Upon
trial, 32 is found to be the true root, for, (32)* = 33554432. In this

case, the unit figure of the root not being large in comparison with the

tens, the approximate did not differ so materially from the true as to

give a quotient figure too great by unity, or some other number. But,

suppose it were required to extract the fourth root of 230625.

Then, 39*0625
1 25

16

jia"-' =4 X {2f = 32, 230 625

The approximate divisor gives 7 as a quotient ; but, upon trial, it

has (o be diminished by 2; and 25, not 27, is the true root.

It will be seen that the units of the root can only be ascertained by

trial. If the units of the root be large in comparison with the tens,

the quotient obtained by dividing the left hand period of the remainder

by the approximate divisor, will often differ considerably from the true

units of the root. The following example will illustrate this :

</13 0321 = 19

1

««"-• r=: 4 .
1' = 4 120'321 = mf-'b + " ^" \^""

'^''

+ &c.

In this example, the approximate divisor gives 80 as a quotient, but

this is absurd. We try 9, the greatest figure of the units, and find it

to be right; for (19)' = 130321. The quotient, 30, being so large, we

concluded that the units of the root must be large, and, therefore,

tried 9.
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Our reasoning has been confined to numbers whose root contained

but two figures ; but, as in the corresponding cases of the extraction

of the square root and cube root of whole numbers, it can readily be

extended to numbers whose root contains any number of figures. It is

not necessary to repeat the generalization of the principles, and we,

therefore, pass at once to the rule for the extraction of the n"" root of

whole numbers.

RULE.

I. Divide the given number into periods of n figures each, begin-

ning on the right. Extract the n"" root of the greatest n"* jMwer con-

tained in the left hand period, and set this root op, the right, after the

manner of a quotient in division. Subtract the n'^ poicer of the root

so foundfrom the left hand period.

II. To this remainder annex the next period, and separate from the

new number so formed the n— 1 figures on the right. Regard the left

hand period as a dividend.

III. Divide the dividend by n times the (n— J^ power of the first

figure of the root. The quotient will be the second figure of the root,

or a number greater than the true second figure of the root. Raise the

two figures of the root found to the n"'^j02oe?-. If the residt exceed the

two left hand periods of the given member, the last figure of the root

must be reduced %intil the v^'^ power of the two figures is equal to, or

something less than the ttco left hand periods.

IV. Annex the third period to the remainder^ after subtracting the

vl^ power of the first two figures of the root from the two left hand

periods, and cut off n— 1 figures from the right of the new number

thus formed, and regard the left hand period as a new dividend.

V. Divide this dividend by n times the (a— 1)"" poioer of the first

tioo figures of the root, the quotient will be the third figure of the root,

or a number greater than the third figure. Ascertain, by trial, whether

the last figure is correct, and proceed in this way until all the periods

are brought down. The number of figures in the root will ahcays be

equal to the number of periods in the given number.

1. Required the </68574961. Ans. 91.

2. Required the ^6240321451. Ans. 91.
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3. Required the ^2476099. Ans. 19

4. Required tlie V 1082432 16. Ans. 101

5. Required the ^1(592662195786551. Ans. 1111

6. Required the ^539218609632. Ans. 222

7. Required the ^35831808. Ans. 12

I Required the ^587068342272. Ans. 48

9. Required the V 75 1547478 10816. A7is. 96

10. Required the ^54165190265169632. Ans. 2222

APPROXIMATE ROOT OF AN IRRATIONAL NUMBER TO
WITHIN A CERTAIN VULGAR FRACTION.

384. The principles of approximation have been so fully explained

under the head of the Square Root and Cube Root, that it will only be

necessary now to give the rule for the approximate ri*'' root to within a

vulgar fraction, whose numerator is unity.

RULE.

Multiply and divide the given number hy the n*'» power of the deno-

minator of the fraction that marks the degree of approximation. The

root of the numerator of the new fraction thus formed, to within the

nearest unity divided hy the exact root of the denominator, will he the

apjyroximate root required.

EXAMPLES.

1. Required V6 to within 2. Ans. 4-

2. Required ^9 to within *. Ans. #.

8. Required ^90 to within }. Ans. 7

4. Required ^2098152 to within i. Ans. \^, or 8, nearly.

5. Required ;y8589929092 to within f Ans. %\ or 8, nearly.
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APPROXIMATE ROOT OF WHOLE NUMBERS TO WITHIN A
CERTAIN DECIMAL.

RULE.

385. Annex as mani/periods of ciphers (each period consisting o/n

figures,) as there are places required in the root. Extract the n"* root

of the new numher thus formed to within the nearest unit, and point

from the right for decimals, the numher of places required in the root.

1. Required ^39 to within .1. Ans. 2.1

2. Required ^116857201 to within .1. Ans. 41.1.

3. Required V999«^J89 to within .01. Ans. 9.99.

4. Required i/258991 to within .1. Ans. 12.1.

5. Required ^511-999999999999999888 to within .01.

Ans. 1.99.

APPROXIMATE Nth ROOT OF A MIXED NUMBER TO AVITIIIN

A CERTAIN DECIMAL.

RULE.

386. Annex ciphers, if necessary, xintil the decimal part will contain

as mani/ periods of n figures each as there arep)lac.es required in the root.

Extract the n"* root, and point from the right the required numher of

decimalplaces.

EXAMPLES.

1. Required '^1.0051 to within .1. Ans. 1.1, nearly.

2. Required ^2.488Tto within .1. Ans. 1.2.

3. Required ^3.583181 to within .1. Ans. 1.2.

4. Required ^62403.21461 to within .1. Ans. 9.1.

5. Required ^392.5430946993 to within .01. .4ns. 3.31.

6. Required ^1725.4995508234 to within .01. Ans. 4.44.

32
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APPROXIMATE Nth ROOT OF NUMBERS ENTIRELY DECIMAL.

RULE.

387. Annex ciphers, if necessary, until there arc as many p>ei'iods of

n figures each as there are places required in the rout. Extract the n"*

root of the 11ew number thus formed, and point off the required numher

of decimal places.

EXAMPLES.

1. Eequired ^.00:^45 to within .1. Ans. .3.

2. Required ^.0028629161 to within .01. Ans. .31.

3. Required V-0004084201 to within .01. Ans. .21.

4. Required ;/.51676701935 to within .01. Ans. .91.

5. Required y.96059690 to within .01. Ans. .99.

6. Required ^.1245732577 to within .01. Ans. .66.

^ Required ^ .464404086785 to within .01. Ans.

8. Required V/.0000000000285311070612 to within .01.

Ans. .11.

9. Required 1^.00048828126 to within .1. Ans. .5.

10. Required '.y.600000000000000000000285311670612 to with-

in .001. Ans. .011.

11. Required y.2706784158 to within .01. Ans. .77.

PERMUTATIONS AND COMBINATIONS.

388. Permutations are the results obtained by writing n letters lu

sets of 1, 2, 3, ... . or n letters, so that each set shall difter from all

the other sets in the order in which the letters are taken. Thus, the

permutations of the three letters, a, h, and c, taken singly, are a, h, c ;

and in sets of two letters each, ah, ac, ha, he, ca, cb ; and in sets of

three letters each, abc, ach, hac, hca, cha, cab.
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It will be seen that the sets differ only in the manner in which the

letters are written, the letters in all the sets being the same.

389. Let it he required to determine the number of permutations of

m letters, taken n in a set.

Suppose the letters to be a, h, c, d, &c., and let us first permute them

singly, we will evidently have m permutations of the m letters taken

one in a set. Now, let us reserve a, there will remain m— 1, letters

b, c, d, &c., which, permuted singly, will give (m— 1) permutations, b,

r, d, e, f, &c. : write a before each of these letters, and we will have

in— 1 permutations, ah, ac, ad, &c., of two letters, with a as the first

letter of each set. Next, let us resei-ve b out of the letters, a, b, c, d,

&e., and then permute a, c, d, &c., singly. We will again have (m— 1)

permutations of the letters, taken in sets of one letter each. Writing b

before each of these sets, we will have (m— 1) permutations of n».

letters, taken in sets of two, with b as the first letter. Reserving c in

like manner, we can again form (m — 1) permutations of m letters,

taken two in a set, with c as the first letter of each set. Reserving all

the m letters in succession, we can evidently form m (jm — 1) permu-

tations of m letters, taken 2 in a set. And, of these, a will be the first

letter of (m— 1) sets, b the first letter of (nt— 1) sets, c the first

letter of (in— 1) sets, and so on. It is plain, moreover, that a will

not only be the first letter of (»i— 1) sets, but that it will also be the

last letter of (m — 1) sets, and that it therefore has been made to

occupy all possible positions. As the same remark may be made of b

and all the other letters, it is obvious that m (ni— 1) truly expresses

the number of permutations that can be made of m letters, taken two

in a set. That is, the number of permutations of m letters, taken two

in a set, is equal to the total number of letters into the total number of

letters, less one.

In like manner, we may find the number of permutations of m letters,

taken three in a set. For, if we omit one of the letters, as a, there

will be m— 1 letters left, and these, permuted in sets of two letters,

will give(w—1) (m— 2) permutations. For, we have just seen that

the number of permutations, taken in sets of two, was expressed by the

number of letters into the number of letters, less one. Writing the

reserved letter, a, before each of these (in — 1) (m— 2) sets, we will

form (m— 1) (in— 2) permutations of m letters, taken three in a set,

with a as the first letter of each set. Reservino; in succession each of
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the tn letters, wc can plainly form m {in — 1) (in— 2) permutations

of m letters, taken three in a set.

By the same course of reasoning it can be readily shown that the

number of peirmutations of m letters, taken four in a set, will be ex-

pressed by m (m— 1) {in — 2) (m— 3) ; and of m letters, taken five

in a set, by m (m— 1) {m— 2) (w— 3) (m— 4).

We observe, in all these expressions, that the first factor is the number

of letters, and that the last factor is the number of letters, diminished

by the number in a set less one. Moreover, each factor after the first

is one less than the preceding factor. Hence, the number of permu-

tations of m letters, taken n together, will be expressed by m (in— 1)

{m — 2) (m— 3) (in— n + 1), or, denoting by A the num-

ber of permutations of m letters, taken n in a set, wc have A =
in (in — 1) (in— 2) (m— n + 1).

To apply this formula, it is best to determine in the first place the

last factor, we then know where to stop. Since the first factor is

always the number of letters, and the law respecting the mean factors

is known, the formula can then be readily applied.

1. Required the number of permutations of 10 letters, taken 7 and 7.

Ans. 10 (10— 1) (10— 2) (10— 3) (10— 4) (10— 5) (10— 6),

Orl0x9x8x7x6x5x4 = 604800.

For, 11 = 7, and in = 10, then in— n -j- 1 = 10— 7 + 1 = 10

—

6, the last factor is then 4, and the first 10, the intermediate factors can

easily be formed.

2. Required the number of permutations of 5 letters, taken 4 and 4.

Ans. 5 (5— 1) (5 — 2) (5— 3) = 5 X 4 X 3x2 = 120.

3. Required the number of permutations of 12 letters, taken 10 and 10,

Ans. 12 (12— 1) (12— 2) (12— 3) (12— 4) (12—5) (12— 6)

(12— 7) (12 — 8) (12 — 9).

4. Required the number of permutations of 12 letters, taken 11

and 11. Ans. 12x11x10x9x8x7x6x5x4x3x2.

5. Required the number of permutations of 12 letters, taken 12 in

a set.

Ans. 12 (12— 1) (12— 2) (12— 3) (12— 4) (12— 5) (12— 6)

(•12— 7X(12 — 8) (12 — 9) (12 — 10) (12 — 11) ; or, reversing the

factors, 1x2x3x4 x5x6x7x8x9x 10 X 11 X 12.
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Remarks.

390. If, in the general formula, A = m(m— 1) (m— 2) . . . .

(m— n -\- 1), we make m = n, and call B the corresponding value of

A, we will have B = n (?i— 1) (n— 2) .... 4 x 3 x 2 X 1 ; or,

reversing the order of the factors, B = lx2x3x4 {n— 2)

(n— V)n. Hence, the number of permutations of n letters, taken all

together, is equal to the product of all the natural numbers from 1 to

n, inclusive.

Example 5 is an illustration of this.

It is plain that, by increasing n (jti remaining constant), we will in-

crease the number of permutations, because we will have more factors

in the product that expresses the number of permutations. And, when

n is made equal to m, this product is the greatest possible. Thus, the

result is greater in example 4 than in 3, and greater in 5 than in 4.

When n= m + 1, the whole formula reduces to zero. This plainly

ought to be so, since it is impossible to permute m letters in sets of

m+ 1 letters. Zero, here, Ss in many other places, is the symbol of

impossibility. •

When n = 1, the last factor, m— n + 1, is equal to m. Hence,

the first and last factors are the same, and we have A = ^- = m ; that

is, the number of permutations of m letters, taken one in a set, is equal

to m.

COMBINATIONS.

391. Combinations are the results obtained by writing any number

of letters, as m, in sets of 1 and 1, 2 and 2, 3 and 3, .... w and n,

m and m, so that each set shall differ from all the other sets by at least

one letter. In permutations, the sets differ in the order in which the

letters are written ; in combinations, the sets differ in the letters them-

selves. Thus, the letters, abc, taken all together, give but one combi-

nation, abc; but will give six permutations,

abc, acb, bar, bca, cab, cba.

If the same letters are taken two and two, they will give but three

combinations

ab, ac, be,

while each combination is susceptible of two permutations ; and there

32*
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are, therefore, six permutations of the three letters, taken two aud two,

thus,

ab, .„ . } cc,
^ ^ .^^ . I

he.1 "^^} )ah will give f , ac will give > and he will irive , ,
ca, '^

J ch.

392. Let it he o-equircd to determine the total immhcr of comhtna-

nations of m letters, tahen n in a set.

It is evideut, from what has been shown, that if we knew the total

number of combinations of m letters, taken n in a set, that we could

get the number of permutations of m letters taken n in a set, by mul-

tiplying the number of combinations by the number of permutations

obtained by permuting each combination ; or, in other words, by multi-

plying the number of combinations of m letters, taken n in a set, by the

number of permutations of n letters, taken all together. Conversely,

when the number of permutations of m letters, taken n in a set, and

the number of permutations of n letters, taken all together, are known,

we can, by dividing the former by the latter, determine the number of

combinations of m letters, taken n in a set.

393. To illustrate more fully by an example.

Let us* combine the four letters, a, h, c and d, in sets of three, we
will have the four combinations,

ahcy ahd, acd, hcd.

If, now, we permute each of these sots, taking all the letters in each

set, we will have the total number of permutations of four letters, taken

three in a set, that is, the total number of permutations of vi letters,

taken n in a set.

"Writing the results in tabular form, we have
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the total number of permutations of m letters, taken n in a set, is equal

to the number of combinations of m letters, taken n in a set, multi-

plied by the number of permutations of n letters, taken all together.

Hence, if

X = the number of combinations of m letters, taken n in a set

;

Y = the number of permutations of n letters, taken all together

;

Z = the total number of permutations of m letters, taken n in a set,

we shall have Z = X . Y. Hence, X ^ y.

But Z and Y are already known.

For Z= m (m— 1) (m— 2) {m — ?i + 1), Formula (A)
;

and Yr= 1 . 2 . 3 . 4 . 5 n, Formula (B). Hence, we have X==
m(m — 1) . . . . (m— n -f 1) ..^ ...

i j xi i. xi—^^ —-—r^^
. Irom which, we conclude that the

1.2.3.4....»
number of combinations of m letters, taken n in a set, is equal to the

number of permutations of m letters, taken n in a set, divided by the

number of permutations of n letters, taken « in a set.

In the application of this formula, it will be of service to remember

that the first factor of the numerator is the number of letters, that each

successive factor is one less than the preceding, and that the last factor

is the number of letters diminished by the number in a set, less one.

It is well, then, to determine first the extreme factors of the numerator;

the mean factors can then be readily supplied.

In regard to the denominator, the last factor is the number in a set,

and the factors counted to the left go on diminishing by unit}'^ unto

the first factor, which is always unity.

1. Required the number of combinations of 6 letters, taken 4 in a set.

6(6— 1) (0— 2) (6— 3) G.x5x4x3 ^^

1 . 2 . o .

4

1.2.3.4

For m = 6 and n = 4. Hence, the first factor of the numerator is

6, and the last m — n { 1 = 6 — 4 + 1 = 6 — 3. The two mean
factors of the numerator are then readily formed, the extremes being

known.
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2. Required the number of combinations of 12 letters, taken 7 and 7.

12(12— 1) (12— 2) (12—3) (12—4) (12— 5) (12— 6)
^'''- 1.2.3.4.5.6.7
12x11x10x9x8x7x6 12x11x10x9x8
1x2x3x4x5x6x7 1x2x3x4x5

X 9 x 8 = 792.

r^ll

3. Required the number of combinations of 12 letters, taken 5 and 5,

L)(12—2)(12—3)(12— 4)_ 12xllxl0x
1x2x3x4x5 ~"

12x10
12(12— 1) (12— 2) (12— 3) (12—4)_12xllxl0x9x8

= 792.

4. Required the number of combinations of 12 letters, taken 9 and 9.

12(12—1) (12—2) (12—3) fl2—4) (12—5) (12—6) (12—7) (12—8) _' 1.2x3x4x5X6x7x«Xy ~"

1X2X3X4X5X6X7X8X9

5. Required the number of combinations of 12 letters, taken 3 and 3

12 (12-1) (12 -2) _ 12 X 11 X 10 _
Ans. ^2.3 -

6
- •'^^-

6. Required the number of combinations of 10 letters, taken 9 and 9.

Ans. 10.

7. Required the number of combinations of 10 letters, taken 1 and 1.

Ans. 10.

8. Required the number of combinations of 25 letters, taken 21

and 21. Ans. 12650.

9. Required the number of combinations of 25 letters, taken 4 and 4.

Ans. 12650.

10. Required the number of combinations of 50 letters, taken 47

and 47. Ans. 19600,

11. Required the number of combinations of 50 letters, taken 3 and 3.

Ans. 19600.

Scholium.

394. The last ten examples show that the same number of letters,

combined differently, may produce the same number of combinations,

that is, the number of combinations of m letters, taken p in a set, may

be equal to the number of combinations of ??i letters, taken g' in a set.

We propose to show that this will always be so when m =p -^q. Thus,
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in example 10, vi = 50 and p = 47 ; in example 11, m = 50 and

q = o. The results have been the same in those examples, because

m = p + q.

To show this, suppose p^ q. Then the number of combinations

of m letters, taken p m sl set, will be expressed thus :

^ _ m{m—1) .... (ot—g4l) (??i

—

q) (m—q—1) (711—p+ 1 )

1 . 2Ts (p-iy^
And for the number of combinations of m letters, taken g' in a set,

we will have the formula,

_ «i (m.— I) (m— 2) (m— 9 + 1)
^ - 1.2.3 (q-l)q —

Hence, D = C
(^- 9) (^-9- 1) • • •

(^ -^ + 1
)

(? + 1) (? + 2) p
Now, it is plain that D will be equal to C, when (m— q) (m— q— 1)

&c. =p(p— 1) . . . . (q + 2) (5' + 1). Or, since tlie foctors iu

both members go on decreasing by unity, and since the number of

them is also equal, the last equation will be true when m— q =:p, or

in = q -\- p>, fis enunciated.

This rule is of importance whenever _?J^ -^^ •

For, then, we have only to take the difference between /) and m, and

the number of combinations of m letters, taken m—p and m— p, will

be the same as the number of combinations of m letters, taken p and p.

Thus, in example 10, instead of taking the number of combinations of

50 letters, taken 47 in a set, we may take the number of combinations

of 50 letters, taken 50— 47, or 3 in a set.

In like manner, the number of combinations of 100 letters, taken 90

in a set, would be the same as the number of combinations of 100

letters, taken 10 in a set.

395. If, in the formula, D = C
(^-g) («^-g-l)

• •
• -(^^-p+D

(9 + 1) (9 + 2) . . . . p '

we make q = v— 1, we will have D = C : for, in that

case, J) will have only one more factor than C. Hence, the number of

covibinations of m letters, taken p and p, is equal to the number of

combinations of m letters, taJcen p— 1 and p— 1, multiplied by the

factor When p = 2, 3, 4, &c., or the sets are made up

of 2, 3, 4, &c., letters, the factor ~ will become —^—

,
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ffi 2 m 3—^T— , —J— . Suppose, for example, that we have 8 letters, or

m =z 8, then the successive multipliers will be |, |, |, |, |, '^. And,

since the number of combinations of 8 letters, taken 1 and 1, is 8, we

will have the number of combinations, taken 2 and 2, 3 and 3, 4 and 4,

&c., expressed 8 X | = 28, 28 x | = 56, 56 X | = 70, 70 x | =56,

56 X i = 28, 28 x' f = 8.

This remarkable law has had many important applications, one of the

principal of which is, the determining of the coefficients in the binomial

formula.

It is plain from what has been shown that, if we write in succession

the number of combinations of m letters, taken 1 and 1, 2 and 2, . . . .

n and n, we will have a series of numbers increasing to the middle term,

and then repeated in retrograde order.

Thus, 6 letters combined, 1 and 1, 2 and 2, 3 and 3, 4 and 4, 5 and 5,

give the series 6, 15, 20, 15, 6. In like manner, 7 letters give the

scries, 7, 21, 35, 35, 21, 7. The law of formation is precisely that

which we have observed in the binomial development; and, in fact, in

this development, the coefficients, after the second, are the combinations

of m letters, taken 2 and 2, 3 and 3, &c., . . . . n and n.

396. Let us now seek the greatest term of the series formed by com-

bining m letters, 1 and 1, 2 and 2, .... n and n. The factors, which

m— 1 TO— 2 m — 91 4- 1
determine the successive terms, are —-— , —^^— , .... .

&c. Now, since these numerators go on decreasing, and the denomi-

nators increasing, it is evident that the successive products will go on

increasing until w— n -\-l = n, and after that will decrease and be

repeated in reverse order. Suppose m an odd number, then placing

m— m -f- 1 = n, we get n r= ^ (m 4- 1). Now, if we include unity,

the last term of the series, there will be m terms in all, and in case of m
being odd, the n*"" term will obviously be even, and, of course, have an

even number of terms preceding and succeeding it. Thus, in the series,

7, 21, 35, 35, 21, 7, 1 ; « = —-,— = 4, will represent the 4th term,

and we see that it has three terms before and three after it. It is plain,

moreover, that tlie 7i^^ term, being formed from the (ji— l)*"" term by

, . , . - , ,171— n -{- 1 ^ . , ,

multiplying the latter by =1, is, also, equal to the (n— ] )<"

term.

Hence, when m is an odd number, there will be two equal central
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terms, the series will go on increasing unto the first of these, and

decreasing from the second unto the last term, unity. Thus, the com-

binations of 5 letters, taken 1 and 1, 2 and 2, 3 and 3, 4 and 4, 5 and

5, give the series 5, 10, 10, 5, 1.

397. When m is even, the factors increase until n= J m. We can-

not, in this case, have n z=z —-— , for that would make n fractional, a

manifest absurdity. No factor, in this case, is unity, and, of course,

there are no equal central terms. The terms go on increasing until

n = ^m, and are then reproduced in reverse order. It is obvious that

whenever n '^Im, the factor will become a proper fraction,

and, of course, the term of the scries formed by multiplying the pre-

ceding term by this factor, will be less than the preceding. Ten letters,

taken 1 and 1, 2 and 2, &c., give the scries, 10, 45, 120, 210, 252,

210, 120, 45, 10, 1.

398. If we add together the values of C and ]), as found in Art.

394, and at the same time make q = 2)— 1, wc will have C + I) =

C + C(m-p-f l)^ C(m + l) ^ m-f 1 ^ ^ X - = /
"^ +h

p p 1 p \ 1 /

(m \ tm— 1 V {jn—p + 3) {in—p -f 2)

T/ V "3 / p— \ p
The second member of this equation plainly denotes the number of

combinations of m + 1 letters, taken p andpj whilst the first member
denotes the sum of the combinations of m letters, taken ^^ andp, and

p— 1 and p— 1. This important relation enables us to get the number
of combinations of m -}- 1 letters from that of m letters. Thus, make
m = 4, p = 3, and p — 1 = 2, then 4 letters, taken 2 and 2, give 6

combinations, and taken 3 and 3, give 4, and we find that 5, or m -f 1

letters, taken p, or 3 in a set, give a number of combinations equal to

4 + 6, or 10.

399. Upon this principle, the following table (p. 384) has been con-

structed. The first vertical column is made up of ones ; the second column
contains the natural numbers from 1 to 20, and expresses the number of

combinations of these numbers, taken 1 and 1; the other vertical

columns express the combinations of the same numbers, taken 3 and 3,

4 and 4, 5 and 5, &c. These vertical columns result from the hori-

zontal, which are constructed according to the principle demonstrated

in Article 398, observing that every horizontal column must close with

unity. Thus, the numbers in the second horizontal column are 1, 2
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and 1, the numbers in the next column are, 1 + 2 = 8, 2 + 1 = 3

and 1, and express the number of combinations of three letters, taken

1 and 1, 2 and 2, and 3 and 3. Now, prefix unity, and we have the

third horizontal row made up of 1, 3, 3 and 1, and the fourth row will

be made up of 1, 3 + 1 ^ 4, 3 + 3 = 6, 3 + 1 = 4 and 1, the last

four numbers expressing the number of combinations of four letters,

taken 1 dnd 1, 2 and 2, 3 and 3, and 4 and 4. All the other horizontal

columns are formed in the same manner.

r-



PERMUTATIONS AND COMBINATIONS. 3S5

vertical column are omitted. Hence, 2*— 1, espresses the sum of the

combinations of t letters, taken 1 and 1, 2 and 2 .... t and t. Thus,

to apply the formula, let it be required to determine the number of

combinations of three letters, taken 1 and 1, 2 and 2, 3 and 3. Then

t =3, and 2* — 1 = 2='— 1 = 8 — 1 = 7. This agrees with the

fact, for the three letters, a, h, c, give us the seven combinations, u,

h, c ; ah, ac, be, and ahr. So, likewise, the four letters, a, b, c, J, by

the formula, give a number of combinations equal to 2^— 1 =16— 1

= 15; and we, in fact, have a, b, c, d ; ab, ac, ad, be, bd, cd ; ahc, abd,

acd, bed ; and abed.

401. We will now deduce an analogous formula to the above, for the

sum of the permutations of n letters, taken 1 and 1, 2 and 2, 3 and 3,

n and ?i, when each letter is combined with itself, so as to be taken t(j

the second, third, fourth, and . . . n"" powers.

PERMUTATIONS IN WIIICII THE LETTERS ARE REPEATED.

Two letters, a and b, permuted in this way, give the four permuta-

tions, aa, ab, ba, bb. Hence, the number of permutations of two let-

ters, taken 2 and 2, when each letter is associated with itself, is equal

to 2^. Three letters, a, b, c, give the nine permutations, aa, ab, ae, ba,

ea, bb, be, cb, ce. Hence, the number of permutations of three letters,

taken 2 and 2, is equal to 3^ Four lettci-s, a, b, c, d, give, when taken
'

2 and 2, the sixteen permutations, aa, ab, ac, ad, ba, ca, da, bb, he,

bd, ch, dh, cc, cd, de, dd. Hence, the number of permutations of four

letters, taken 2 and 2, is equal to 4^. And, in general, it is plain that

the number of permutations of n letters, taken 2 and 2, is equal to n^.

We will next show that the number of permutations of n letters, taken

3 and 3, is equal to n^. The three letters, a, h, and c, when permuted

in this way, give the twenty-seven permutations,

aaa, aah, aae, aba, baa, aca, eaa, ahc, cba ;

hbh, bbc, bba, bcb, ebb, bah, abb, bac, hca ;

cec, ccb, eca, cb.-, bee, eac, aec, cab, aeh.

Hence, the number of permutations of three letters, taken 3 and 3,

is equal to 3^ And, in general, of n letters, taken 3 and 3, the num-

ber is 11^. In like manner, the number of permutations of n letters,

taken 4 and 4, is expressed by W*. Hence, for the entire sum of the

permutations, taken 1 and 1, 2 and 2, 3 and 3 . . . . n and n, we have

33 z
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, («" 1)?!, , , , . .

n -\- ir -}- ir -(- n° = ^^
^— , the whole, constituting a geo-

metrical series, whose common ratio is n. Thus, to apply the formula,

suppose it be required to determine the number of permutations of five

n ,(«•' — 1> (5^— 1)5 15620 „,,^, ^
letters, then n = 5, and ^ ^— = ^^ -. =—-.— = o'JUo, and

' '

11 — 1 4 4

/'^^n \)7l
if n = 24, the number of letters in the alphabet, we have ~ =

n— 1

(24^^^^^ = 1301724288887252999425128493402200.

Thus, let it be required to determine the entire number of changes

that can be made with the three vowels, a, e, and /. The formula

^ r^— , becomes -^^

—

^ = —- . 3 := 39, and we nnd that we have
11— 1 ' 2 2

the thirty-nine permutations.

a, €, t, taken 1 and 1 ; ae, at, ea, ia, ei, ie, aa, ee, ii, taken 2 and 2,

aei, eai, iea, eia, iae, axe, taken 3 and 3, in the usual way; aaa, aae,

aai, eaa, iaa, aea, aia, eee, eea, cei, aee, iee, eae, eie, tii, iia, He, aii,

eii, iai, ici, taken 3 and 3, when the letters are combined with them-

selves.

PARTIAL PERMUTATION.

' 402. Sometimes the nature of the problem is such, that some of the

quantities cannot be permuted with each other. Thus, let it be re-

quired to determine how many words of two letters each can be formed

out of the letters a, e, c, d, admitting that the consonants associated

together will not form a word. The formula for the number of per-

mutations of m letters, taken n and n, gives us 4 (4 — 1) = 12. But

we have to reject the number of permutations of two letters, c and (/,

taken 2 and 2, or 2 (2 — 1) = 2. Hence, 12 — 2 = 10, the number

of permutations that can be formed in the required manner. They

arc, ac, ac, ad, ea, ca, da, ec, ed, ce, de.

RULE.

Find the entire nvmber of ^'""'"t^'^'totions of n letters, taken n and n,

nnd from this subtract the number of permutations of the p especial

letters, taken n and n.
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EXAMPLES.

1. How many words of two letters each can be formed out of the 4

first letters of the alphabet, assuming that consonants alone will not

form a word ?

A71S. 4 (4— 1)— 3 (3— 1) = 6 ; words, ab, ac, ad, ha, ca, da.

2. How many numbers composed of 3 digits each can be formed

from the number 24371, in such a way that none of the numbers con-

tains only odd digits ?

Ans. 5 (5 — 1) (5— 2) — 3 (3 — 1) (3 — 2) = 54. Numbers,

243, 234, 342, 324, 432, 423 ; 247, 274, 472, 427, 742, 724 ; 241,

214, 412, 421, 142, 124; 237, 273, 372, 327, 732, 723; 231, 213,

312, 321, 132, 123; 271, 217, 721, 712, 172, 127; 437, 473, 374,

347, 734, 743 ; 431, 413, 341, 314, 134, 143 ; 471, 417, 741, 714,

174, 147'

3. How many words of letters each can be formed out of G vowels

and 6 consonants, assuming that the consonants by themselves cannot

form a word ?

Ans. 12 (12 — 1) (12 — 2) (12 — 3) (12 — 4) (12 — 5) —
6 (6— 1) (6— 2) (6— 3) (6— 4) (6— 5) = 6G45G0.

4. How many words of six letters each can be formed from the 20

consonants and G vowels of the alphabet, assuming that the consonants

alone cannot form a word ? Ans. 137858400.

GENERAL EXAMPLES IN PERMUTATIONS AND COMBI-
NATIONS.

1. Three travellers on a journey reach three roads: in how many

different positions, with respect to each other, may they continue

travelling, provided, that no two of them pursue the same road ?

Ans. G. A may take the first road, B the second, and C the

third; or, A the first, C the second, B the third, &c.

2. How many days can 3 persons be placed in a different position

at dinner ? Ans. G days.

3. How many days can 8 persons be placed in a different position at

dinner? Ans. 40320 days.



888 GENERAL EXAMPLES IN

4. In how many different positions can a stage driver place the 4

horses of his team in harness ? Aiis. 24.

5. How many changes may be made in the words of the sentence

:

" Lazy boys make worthless, vicious men ?" Ans. 720.

G. How many changes may be struck with 10 keys of a piano ?

Ans. 3028800.

7. How many words of five letters each can be made out of the first

24 letters of the alphabet, assuming that no letter is repeated more

than once in the same word ? Ans. 5100480.

8. How many words of three letters each can be made out of the 24

first letters of the alphabet, with the same proviso as the preceding ?

Ans. 12144.

9. How many numbers of two digits each can be made out of the

numbers 1243 (provided, that none of the digits of 1243 appear twice

in the same number), and what are they ?

Ans. 12. Numbers, 12, 43, 14, 13, 21, 34, 41, 31, 24, 23, 42, 32.

10. How many numbers of five digits each can be formed out of the

number 187G543, provided, that no digit of the given number appear

twice in the required results ? Ans. 2520.

11. How many changes can be made in every file of 2 men in a

squad of 20 men, so that the files shall differ by at least one man ?

Ans. 190.

12. How many changes can be made in the position of the first 12

letters of the alphabet ? Ans. 479001600.

13. How many numbers of 1, 2, and 3 digits can be formed out of

the number 476, provided, that no digit is repeated in the isame

number ?

Ans. 15. Numbers, 4, 7, 6: 47, 46, 74, 64, 67, 76; 476, 467,

746, 764, 647, 674

14. How many nuiubers of 1, 2, and 3 digits can be formed out of

the number 476, when each digit is repeated 1, 2, and 3 times in the

respective numbers ?

Ans. 39. Numbers, 4, 7, 6, 44, 47, 46, 74, 64, 67, 76, 77, GO, 476,

467, 746, 764, 647, 674 ; 444, 447, 446, 744, 644, 474, 464 ; 777,

774, 776, 477, 677, 747, 767; 666, 664, 667, 466, 766, 646, 676.
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15. How many numbers of 1, 2, 3, 4, and 5 digits can be formed

out of the number 56789, provided, that no digit occurs more than

once in the connection with exactly the same digits ?

Ans. 31. Numbers, 5, 6, 7, 8, 9 ; 56, 57, 58, 59, 67, 68, 60, 78,

79,89; 567, 568, 569, 578, 579, 589,678, 679, 689,789; 5678,

5679, 5689, 5789, 6789 ; 56789.

16. Three travellers, A, B, C, on their journey come to

three roads, and may either travel all together on one of the

three, or singly, on the three roads, or two on the same road,

and the third on a different road. How many selections may

they make of their routes ?

Ans. 27. Three, when all together; six, when they go separately; six,

when A and B go together, and C goes by himself; six, when A and

C are together, and B by himself; six, when B and C are together,

and A by himself.

17. IIow many numbers composed of three digits each can be made

out of the number 123456780, provided, that all the numbers thus

formed shall differ by at least one digit. Ans. 84.

18. How many numbers of 4 digits each can be formed out of the

same number, 128456780, so as to fulfil the above condition ?

Ans. 126.

10. How many numbers composed of single digits, of 2 digits, of 3

digits, of 4 digits, and of 5 digits, can be formed out of the number

12345, in such a way that each number shall differ from all the other

numbers by at least one digit.

A71S. 31. Numbers, 1, 2, 3, 4, 5 ; 12, 13, 14, 15, 23, 24, 25, 34,

35, 45; 123, 124, 125, 134, 135, 145, 234, 235, 245, 345; 1234,

1235, 1345, 1452, 2.345 ; 12345

20. How many numbers composed of 1, 2, 3, 4, and 5 digits can be

formed out of the number 12345, in such a way that the same digit

may be repeated once, twice, &c., in the same number, and the several

numbers necessarily differing only in the position of the digits.

Ans. 3005. Numbers, 1, 2, 3, 4, 5; 12, 13, 14, 15, 21, 31, 41,

51, 23, 24, 25, 32, 42, 52, 34, 35, 43, 53, 45, 54, 11, 22, 33, 44,

55; 111,112, 113, 114, 115, 211, 311,411, 511, 121, 131, 141,

151, &c.

33*
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21. A gentleman being asked what he would take for a valuable

horse, replied, that his price was a cent for every change that he could

make in the position of the 32 nails in the horse's shoes. What was

his price?

A71S. 2'631308S69336'93530l'672180121600600 dollars.

LOGARITHMS.

403. Tlie logarithm of a quantity is the exponent of the power to

which it is necessary to raise an invariable quantity, called the base, to

produce the quantity.

Let a be the invariable quantity or base, x its logarithm, and i/ the

quantity given ; then, a^ = y. In this equation, x is the logarithm

of 1/. It is usual to write logarithm, log., or simply, 1. Hence,

X = log. y, or 1. 1/. We will begin the discussion by supposing a ^ 1,

and X positive, and, though the general principles of logarithms are true

for quantities as well as for numbers, yet, as iu practice the logarithms

of algebraic quantities are seldom used, we will first show the relations

between numbers and their logarithms. Resuming the equation, a* = y,

we see that when i/ = 1, x = 0, for, a" =: 1. Hence, log. 1 = 0, and,

since this will be so, whatever may be the value of a, we see that the

log. 1 is always zero. Every value given to x, above zero, will cause

1/ to increase more and more ; when a; = 1, ,?/ = a. When x has values

attributed to it greater than 1, y will exceed a more and more, until

x = CO gives also y = oo . Suppose, for instance, a = 8, then

x = and x = 1 give y == 1 and y = S. Moreover, x = 1, 2, 3,

4, &c., gives 1/ = 8, 64, 512, 4096, &c. Finally, a; = oo gives y = go
,

for, 8^" = CO . It is plain that, when x has an intermediate value

between and 1, that y will have a value between 1 and 8,

and that by making x pass through all possible positive values,

entire and fractional, between and 1, and 1 and oo
, y will be made

to pass through all possible positive values between 1 and 8, and

8 and cc . The contrary of what we have just seen will be the case

when X is negative. For the equation, a~'' =y, will become —= y; and

it is plain that, as x increases y will decrease, and that when x = cc
,

y = 0. To illustrate this, let a= 8, and let cr r=: 0, 1, 2, 3, 4, &c.,
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then, y = 1, |, g'j, ^jj, 4 g^g, &c. And it is evident that, by giving

to X all possible positive values, entire and fractional, between U and oo
,

y may be made to pass through all possible positive values between 1

and 0. Suppose now, a <^ 1. It will still be true that all possible

values may be formed from the powers of one number, but the order of

the numbers will be reversed. For values of ar, between the limits

and — CO , we will get all possible positive numbers between 1

and + 00 ; and for all values of x, between and + oc , we will get

all possible positive numbers between 1 and 0.

The remarkable fact that all positive numbers might be regarded as

the powers of one invariable number, led to the invention of logarithmic

tables by Napier, for the purpose of abridging complicated numerical

calculations. The invariable number is called tlie base of the si/sfem of

logarithms, and may evidently be any number whatever, except unity.

Since all the powers of unity are unity, it is plain that this number

cannot be taken as a base. The base of the common system of loga-

rithms is 10. The powers of this number are more readily formed

than the powers of any other number whatever, and this was the main

reason for its selection.

We have (10/= 1, Hence, log. 1 =0,
(10)' = 10, '' log. 10 =.1,

(10)^=100, " log. 100 =2,
(lOy= 1000, " log. 1000= 3,

&c. &c.

We see that, as the number changes (the base being the same), the

logarithm also changes. It is plain, moreover, that any change in the

base, the number being unaltered, will produce a change in the loga-

rithm. Thus, if the base is 12, since 12'= 12, we have log. 12 := 1.

The logarithm of 10 in this system will then not be 1, as in the system

whose base is 10, but will be some fractional number less than 1.

Hence, we see that logarithms depend upon the number and upon the i

base. That part of the logarithm in any system which depends upon

the base is called the modulus of the system. A table of loijarithms is a

table exhibiting the logarithms of all numbers between certain limits,

as and 100, or and 10000, calculated to a particular base.

The general properties of logarithms are independent of any particular
j

base. A few of these general properties will now be demonstrated.
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First Property.

404. The logarithm of the product of any number of factors taken

in the same system, is equal to the sum of the logarithms of those

factors.

For, let a represent the base of the system, y, y', ?/', y'", &c., several

numbers, and x, x', x", x'", &c., their corresponding logarithms. Then,

cv^= y, o"' =: y' , a""= y", a""" = y"', &c. Multipl3'ing these equa-

tions together, member by member, we have 0^+^'+""+^'"+ ^'- z=i y ijy"y'"

,

&c. Then, since the exponent of the base is (from the definition) the

logarithm of the second member, we have x + x' + x" + a;"' + &c.

= log. yy'y"^", &c. But the first equations give x = log. y, x' =
log. y', x' = log. y", &c. Hence, log. y -\- log. y' + log. y" + log :!/"'

+ &c. = log yy'y"y"' &c., as enunciated. Then, since the logarithm

of the product of any number of factors is equal to the sum of the

logarithms of these factors, it follows that to multiply by means of loga-

rithms, we have only to add together the logarithms of the factors, and

to find the number corresponding to this sum. This number will be

the product required. Thus, let it be required to multiply 100 by 10,

by means of logarithms. The log of 100 is 2, in a system whose base

is 10 ; the log of 10 is 1 ; the sum of these logarithms, 3, is the loga-

rithm of the product. Look for the number corresponding to 3 as a

logarithm, and you will have 1000 as the product required. To exhibit

the whole in an equation, we have, log. 100 x 10 = log. 100 -f log. 10

= 2-1-1 = 3; the number corresponding to which is 1000.

We have, then, for multiplication by means of logarithms, this

RULE.

Add toycther the logarithms of the several factors. This sum will he

equal to the logarithm of the product. Looh in the table of logarithms

for the number corresponding to this logarithm, and you loill have the

product required.

1. Required the equivalent expression to log. a b c d.

Ans. Log. a + log. b -\- log. c -f- log. d.

2. Required the equivalent expression to log. (San.

Ans. Log. 6 -f- log. a -f- log. n.
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3. Required the equivalent expression to log. (a + by c" d^.

Ans. Log. (a + i)" + ^og. c" + log. d^.

Second Projperty.

405. The logarithm of the quotient arising from dividing one quan-

tity by another is equal to the logarithm of the dividend minus the

logarithm of the divisor. For, let x equal the quotient of two quan-

11 ^''^
4 1-1

titles, m and n, then x = —, or nx = m. And, since, when two
n

quantities are equal their logarithms must be equal, we have log. nx

= log. m, or log. n + log. x = log. w. Hence, log. x= log. m— log.

n, as enunciated. From this we derive for division, by means of loga-

rithms, the following

RULE.

From the logarithm of (he dividend subtract the logarithm of the

divisor; the remainder will be the logarithm of the quotient. The

number in the table corresponding to this logarithm will be the quotient

required.

Thus, to find the quotient of 1000 by 10, we have log. 1000 — log. 10

= 3— 1 = 2, and the number corresponding to 2 as a logarithm is

100.

1. Find the equivalent expression to log. -—

.

bn

Ans. Log. am— log. bn, or log. a + log. m— log. b— log. n.

2. Find the equivalent expression to log. ^

—

~.

Ans. Log. X -f- log. ij— log. (b -\- n).

Find the equivalent expression to log
"^

bn

Ans. Log. (x -f _y)— log. b— log. n.

4. Find the equivalent expression to log. j^
bn

Ans. Log. X -f log. y— log. b— log. n.
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5. Find the equivalent expression to log. (y^ )•

Ans. Log. (.'r?/)P — log. (in)p.

G. Find the equivalent expression to log. (- V

Ans. Log. (« + i)— log. c.

Third Property,

406. The logarithm of the power of a number is equal to the expo-

nent of the power into the logarithm of the number.

For, take the equation, as=y, and raise both members to the m*"

power, we will have a"^ = 3/° (A). In equation (A), m is any number

whatever, positive or negative, entire or fractional. But, since the

exponent of the base is the logarithm of the second member, equation

(A) gives mx = log. ?/™ ; and the first equation gives x = log. y.

Hence, m log. y = log. ?/", or log y"^ = m log. y, as enunciated. It

follows, then, that to raise a number to a power by means of logarithms,

we have only to apply this

RULE.

Multiply the logaritlim of the numher, as found in the tahic, hy the

exponent of the poioer to which it is to be raised. This product xciJl he

the logarithm of the poioer, a7id the number found in the table corres-

ponding to this logaritlim loill he the required poioer.

Thus, to raise 10 to the second power by means of logarithms, we

multiply the logarithm of 10, which is 1, by 2, the exponent of the

power. The product, 2, is the logarithm of the power, and the number

corresponding to this logarithm is 100. So that we have log. (10)^ =
2 log. 10 = 2 ; the number corresponding to which is 100.

1. Find the equivalent expression to log. (a + bj^.

Ans. m log. (a H- b).

2. Find the equivalent expression to log. c" (a + t)'".

Ans. n log. c + m log. (a + b).

The 1st. property is here used in connection with the 3d.
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3. Find the equivalent expression to log. a" {mry.

Alls, n (log. a + log. r + log. m).

4. Find the equivalent expression to log. a» (-A .

Ans. 11 (log. a + log. h— log. c).

The 2d. and 3d. properties both employed.

5. Find the equivalent expression to log. ^^

—

j^
— .

Ans. m log. (a -\- I) — 2 log. h.

6. Find the equivalent expression to log. — ^-g.

Ans. Log. (a — x) — 2 log. (a -j- x).

(a -f xY
7. Find the equivalent expression to log. —^ ^.

Ans. 2 log. (a + x) — log. (a— x).

Fourth Properti/.

407. The logarithm of the root of a number is equal to the logarithm

of the number divided by the index of the root.

For, take the equation, a^ = y, and extract the m"" root of both

X 3j

members. Then, Va" = '</,?/, or, a^ ='y/y- Hence, — =log. Vy

(A.), the exponent of the base being the logarithm of the second

member. But the first equation gives x = log. y ; equation (A) then

becomes log. ^— = log. "V'y, or log. ly v = log. ^—, as enunciated.
in "- m

For extracting roots by means of logarithms we have, therefore, this

RULE.

D'lcide the logarithm of the number, lohose root is to be extracted, by

the index of the root. The quotient toill be the logarithm of the root;

the number found in the table, corresponding to this logarithm, will be

the root required.

Thus, to extract the square root of 100 by means of logarithms, we
divide 2, the logarithm of 100, by 2, the index of the root. The quo-
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tient, 1, is the logarithm of the root, aud 10, the number con-espoudiug
to this logarithm, is the root required.

EXAMPLES.

1. Find the equivalent expression to log. ^~x + xj.

. Log. (.-:• + y^

2. Find the equivalent expression to log. ^d^— .r^.

Log, (g^-x^) log, (g + .T) („ - ,:)
^LUS.

^
— _ :^ 1 log. (^a ^ x)

+ i log. (a— x).

3. Find the equivalent expression to log. a^ ^a^.

Ans. -g- log. a.
o

4. Find the equivalent expression to log. ^/(o + by.

Ans. I log. (a + F).

408. Since, a° = 1, it matters not what is the value of a, and, since the

equation, a°= 1, gives = log. 1, it follows that the logarithm of unity

in every system of logarithms is equal to zero. From this we readily

deduce the

Fifth Property.

The logarithm of the reciprocal of a number is equal to the loga-

rithm of the number taken negatively.

For, let N bo the number, then -r^ will be the reciprocal of the num-

ber, and we have log. ^ = log. 1 — log. N = — log. N = — log. N,

as enunciated.

EXAMPLES.

(a 4- xY
1. Required the equivalent expressions to log. 1^ ^—-, and log.

(a -f xf
Ans. 2 log. (a -f- a") — 3 log. x, and 3 log. x— 2 log. (a -{ a;).
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(a- r^)
2. Eequired equivalent expressions to log.

^ ~, and log.

(.a + xy
a'— x''

Ans. Log. (a— x)— 3 log. (a+ j:),and31og. (cy+.t)— log. («— x).

Corollary.

409. "When a^ 1, we have a"= oo . Hence, oo = log. x . That

is, the logarithm of infinity in a system, whose base is greater than unity,

is, itself, infinity. And, since = — , it follows from the fifth property,

that log. = — -x. . That is, the logarithm of zero in a system, whose

base is greater than unity, is minus infinity.

When a <^ J^, a number, y^ for example, it is plain that the base

must be raised to a power denoted by — oc, in order to produce in-

finity. Thus, (j'jj)"" = r-f^ = (10)=^ = X . Hence, the logarithm

of infinity in a system, whose base is less than unity, is minus infinity.

Hence, by the fifth property, the logarithm of zero in a system whose

base is less than 1, is plus infinity. Thus, it is plain that (jjj)°° = 0,

from which oo = I02;. 0.

Sixth Propertij.

110. The logarithm of any base, taken in its own S3-stcm, is unity.

For, suppose there are any number of bases, a, h, c, &c., and desig-

nate the logarithms in the systems, of which these are the bases, by

log. log.' log." &c. We have a' = a, i' = h, c' = c, &c. Hence,

1 = log. a, 1 = log.' 6, 1 = log.' c, &c.

Thus, 1 is the logarithm of 10 in a system whose base is 10. But,

in the system whose base is 8, the logarithm of 10 must be greater

than 1. Because, 8' = 8, or 1 = log. 8. Hence, a number greater

than 1 must be the logarithm of 10.

Seventh Principle.

411. If we have a table of logarithms calculated to a particular base,

the logarithms of the numbers in this table, divided by the logarithm

of a second base, taken in the first system, will give, as quotients, the

logarithms of the same numbers in the second system.

34
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For, let fl* =;/, and i^ = ?/. Then a* = i'- (A). Distinguish the

logarithms of the two systems by log. and log.'. Taking the log. of both

members of (A), we have x log. a = z log. h. But, since x = log. y,

and z = log'. ;y, and log. a =1, this equation becomes log. 1/ = log.'y,

lo"". 1/

lotr. i. Then log.' y = ,
^ '

, as enunciated.^ ^ "^ log. 6

412. The two systems in most common use are the Napierian, whose

base is 2.718281828, and the common, whose base is 10. Suppose

the Napierian logarithms to be designated by log.', and the common by

log. Then, if we knew the common logarithm of any number, we can

get the Napierian logarithm of the same number, by dividing the

common logarithm of the number by the common logarithm of the

Napierian base; or we can get the common logarithm of a number,

knowing its Napierian logarithm, by multiplying the Napierian logarithm

by the common logarithm of the Napierian base.

DIFFERENTIAL OF a'.

413. The Binomial Formula enables us to find the differential of a'.

For, let u = a^, and give x an increment, h. Then, tt' = a'^^^ = a'^a}',

and u'— u = a^^a}"— 1). Let a = 1 -}- b, and develop o'' by the

binomial fonnula, we will have a^ = (1 -f &)'' = 1 + hh + -^—-^^

+ 'ii^2M*^^. .. ^ ,. + .(„_| +|_| +1).
by neglecting the higher powers of h, as infinitely small quantities of

the second order and higher orders. But, since h = a— 1, we have

a" = 1 + /i( (a — 1)— ^^iizl^' + illzlT— Sic.) = 1 + mi, by

designating the quantity within the parenthesis by N. Hence, u'— u

z=a^(ci^ — 1) = a'^N/i, and du = a^'Ndx = iiNdx; from which

dx = -^. — And, since u = a^, we have x = log. m, and dx =
N M

''

(^(log. «). Moreover, since a is the base, and N depends entirely upon

a, we see that the differential of a logarithm is equal to the reciprocal

of a constant, dependent upon the base into the differential of the

quantity divided by the quantity.
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EXAMPLES.

1 Required differential of b^. Ans. Ni^Y/i/.

2. Required differential of log. (1 + re).

1 ^(l+x)_l
N' 1 + X ~N'l + x'

3, Required the differential of log. (1 + xy.

Ans.

dx

dx

N (\ + xf N (1 + x)'

LOGARITHMIC SERIES.

414. A logarithmic series is one which will enable us to calculate

approximatively the logarithms of any number whatever. We have seen

that the logarithm of a number depends, 1st, on the number ; 2d, on

the base. Hence, the development of a logarithm must contain the \
number, or some quantity dependent upon the number, and some /
quantity dependent upon the base. These two facts serve as a guide

in assuming the form of development. Suppose we have the equation,

a'= x, in which x is the number, and i/ the logarithm. Let us

assume log. a; = A + A'.r -|- A'V + A"'x' + &c., in which A, A',

A", &c., arc independent of x, and dependent upon the base, a. Now,
if we make .r = 0, the first member becomes infinite, whilst the second

reduces to a finite quantity, A. The assumed form is then wrong.

Again, assume log. x = Kx + A'x + A'V + &c. Making x = 0,

we get ± Qo = 0, which is absurd. The development then cannot be

made under the second form. An examination of the two forms shows

that we have assumed the logarithm to be developed in the powers of

the number, and we have seen that it cannot be so developed. Since

log. x cannot be directly developed, let us see whether log. (1 + x) can ^V,

be expanded into a series.^ Assume log. (1 + a;) = Ax + AV + f

A'V + A'"*^ + &c. (B). When a? = we have log. 1 = 0, wliich '

presents no absurdity. Taking the differentials of both members of (B),

and dividing out by dx, we have, — . .j = A + 2A'.e + 3A'V +

4A"V + &c. (C), in which, N = («.— l^ — ^^^-ZH 4-
^" ~ ^^'

— ^c. Making a; = in (C), we get A = ^. Differentiating (C),
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we get, after dividing out by ilr, — ^ . \.^= 2A' + 2 . oA"x- +
JN (i -f-

-t)

8 . 4 A"V + Sec. (D), whence A' = — ^^. DiflFercutiating (D), and

2 1
dividing out by dx, we have + -^ . -r^ = 2 . 3A" + 2 . 3 . 4A"'x

-{ &c. (E). Whence, by making x = 0, there results, xV = -j- ttju^-

The hiw for finding the coefficients is now plain ; A'" will be found equal

to — -r<^, A'-'*' = -^^r^, A^ = — T7T7, &c. lleplacing the constants
4N 5N

'

6N' i- &

1 / X^ X?
in (B) by their values,, we have log. (1 + a:) = -^^ ( x— — + -^ —

T + l-H <^-)

Since (1 + ic), the number whose logarithm is developed, has been

expanded in the powers of x ; we conclude that, though the logarithm

of a number cannot be developed in the powers of the number, it may

be in the powers of a number less by unity.

Since N = (a — 1) — ^^

—

-—- + -—
^
—-, &c., in which a is the

base of the system, it is plain that the factor, — , in equation (P), depends

for its value upon the base alone. Equation (P) shows, moreover,

that the logarithm of a number is composed of two factors, one

dependent upon the base alone, and the other dependent upon the

number alone. The factor which depends upon the base for its value

is called the modulus of the system . The modulus is usually represented

by M, or M'.

415. If we take the logarithm of (1 + ic), in a system whose base

is a' , and denote the new logarithm by log.', it is plain that the new

development will differ from the first only in this notation and in the

}nodulus. Hence, we will have

log. (1 + ..:) --= M(r_
l'
+ f'

-|V
-f
- &c.), and

log.' (1 + .0 = M'(.-- I +^-^ + ^- &c.).

Hence, log. (1 + x) : log.' (1 + x) : : M : M'.

That is, the logarithms of the same mtmher in tioo different systems

are to each other as the modtdi of these systejns. •
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416. Since the modulus is expressed in terms of the base, it follows

that if the base be given, the modulus can be determined, and con-

versely, the base can be found from the modulus.

If, then, we make M' = 1, the base of the system will become knowu

The system of logarithms, whose modulus is unity, is called Napierian

from Lord Napier, the inventor of logarithms. The base of the system

calculated from the assumed modulus, is 2-718281828.

COMMON AND OTHER LOGARITHMS FOUND FROxM
NAPIERIAN.

417. The proportion, log. (I + x) : log'. (1 + a;) : : M : M', be-

comes, when M'= l, log. (1 + x) : log'. (1 -f a:-) : M : 1. Hence, we

have log. (1 + »•) = M log'. (1 -f x) (A).

This equation shows that the Napierian logarithm of any number,

muUiplied hy the modulus of any other system, loill give the logarithm

of the same numher in that system. Moreover, equation (A), compared

with the 7th Property, shows that the viodulus of any system is equal to

the logarithm of the Napierian base of that system.

MEASURE OF ANY MODULUS.

418. Let a be the base of any system, and let the logarithms of this

system be designated by log., and those of the Napierian by log'. Let

(1 + x) be any number, then the 7th Property will give log. (1 -i- x)

= -—
J
— log'. (1 + x) (B). Equation (B) compared with (A) shows

that M = ,

—

}
—. Hence, the measure of the modulus of any system

is equal to the reciprocal of the Napierian logarithm of the base of that

system.

This measure is even true for the Napiarian modulus itself, for we

1 1 ,
have M = ,

—

-.— = - r= 1.
log', e 1

TABLE OF NAPIERIAN LOGARITHMS.

419. The formula, ? (1 -f a:)=M (.T— "^ +^
—

'^ +^—^ -f- &c.,)

84* 2a
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X X X^
becomes, wlien M = 1, I'{1 + x) = (x — -^- + ., —

j

+ &c.,)(C).

Making x= 1, we have, ^2 = 1 — i + J— i + i — i + &c.

This series enables us to calculate the Napierian logarithm of 2, and,

by making x = 2,S, 4, 5, &c., we can calculate the Napierian logarithm

of 3, 4, 5, 6, &c. But the series does not converge rapidly enough,

because, for every number greater than 2, the series goes on increasing

continually, and it would be necessary to take an infinite number of

terms in order to make the calculation in any degree correct. A simple

artifice will enable us to convert the above series into a converging one,

that is, into a series in which the terms will become smaller and smaller;

so that all after a certain number may be neglected without aifecting

the result materially. Two transformations are used to aficct this con-

vergence.

First Transformation.

420. Make x =z - \\\ equation (C), it will become

-^+&c.,(D).

This series will become more converging as y increases.

Making y = 1, 2, 3, 4, 5, 6, &c., in succession, we get

>2— n=r2= i — ^ + J— J + i— i + &c.,

Z'4 = Z'3 + i- J3 + hV- 3k + T2V7r-&c.,
/'5= Z'4 + 1 — 3^. + ih— TTR4 + i,~ho — &c-

The first series enables us to calculate the Napierian logarithm of 2.

The second series enables us to calculate the Napierian logarithm of 3

when that of 2 is known ; and the formula, evidently, only can be used

when the logarithm of the next lowest number is known.

Second Transformation.

421. The preceding formula does not give a sufficiently converging

series for small numbers. A better series can bo obtained in the fol-
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lowing manner. In the equation, ?'(! + x) ^=x— tt -^ o r +
x^ x^— ^4- &c., we get, by changing + .r into — x, /'(I — a-)=— x

3,2 ^3 ^4 j.a ^.6— — -^ -. ^ — -; &c. Subtracting the second series
2 3 4 5 °

from the first, we get l'{l -f x) — ?'(1 — .r) = I'L "*" ^
\ = 2 (x +

^ + ? + T + '^ + n + S + *°-')(*=)- p'-l^ = i +

-, in which z is a whole number. Then, x = ~ =-, and replacing x

in (E) by this value, we get ^'(1 + -), or I'(I + z) — l' z=2 (- -

verges more rapidly than (D), and will answer even for small numbers.

Let z = l,2, o, 4, 5, 6, &c., we will have

re-« = 2 (i + -1^ +^^ + ^-2_ + _2_ + fe.

f6— ?5 = 2(T'r + 8(ir)+5Tn)»+f(Tl)'+9(TT7+ll(nv'
+ &c.)

1. For small numbers it is necessary to take a good many terms of

this series, but when the numbers are large one or two terms will

answer. Thus, let a- = 1000, then nOOl—nOOO =2(5 J^-j- + o-oiTr-.^.,

+ FrF^jK(yf\5 + ^cV We see that the fi;-st term of this series will

only add about jq^^o *° *^^ logarithm of 1000, and the second term

will add less than godoFoo^oo- And, since logarithms are seldom
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carried further than the Tth place of decimals, all the terms after the

first may be neglected.

2. In constructing a table it is only necessary to calculate the loga-

rithms of prime numbers, since the logarithm of any number made up

of factors is equal to the sum of the logarithms of its factors. Thus,

no = n + I'b, Z'12 = Z'3 + Z'4 = Z'3 + 2Z'2, &c.

3. Knowing the Napierian logarithm of 10, we can fiud the modulus

of the common system. For, log.' 10 : log. 10 : : 1 : M. Hence,

M = -^rrcT '
^^^ ^*-*S- 1^ "= ^^ ^"^^ *'^® calculated value of log.' 10 is

2.302585093. Therefore, M = ^ oaolo^ac,^ = 0-434294482.

If we now multiply the Napierian logarithms found from the series

by this modulus, we will have a table of common logarithms.

ADA^ANTAGES OF THE COMMON SYSTEM.

422. 1. A fixed law for the characteristic.

The characteristic of a logarithm is its entire part. Thus, 2 is the

characteristic in the logarithm 2-302585093.

Whatever may be the base of the system, the logarithms of the

powers of that base will contain no decimals, and, therefore, be charac-

teristics only. Thus, let 7 be the base, then the log. 7 — 1,

log. 49 = 2, &c.

In the common system, with the base 10, we have log. 10 = 1,

log. 100 = 2, log. 1000 = 3, &c., and we see that the characteristic is

always one less than the number of figure places in the number. This

is true, whether the number be an exact power of the base or not

;

thus, 512, lying between 100, whose logarithm is 2, and 1000, whose

logarithm is 3, has for its logarithm 2 and a certain decimal. Now,

10 is the only number in the whole range of numbers, which, taken as

a base, will give logarithms whose characteristics are formed according

to a fixed law.

In a table of common logarithms, the characteristics are not written,

since they are always one less than the mimher of figures in the given

numbers.

2. A tahle of logarithms for decimals need not be constructed.

Since, Log. -1 = log.* -J^ = log. 1 — log. 10 = — 1.

Log. -01 = log. jJ = ^og- 1 — 'og. 100 = — 2.

Log. -001 = log.
j-^oT)

= log- 1 — log. 1000 = — 3.
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And, since, in general, log. := log. 1— m log. 10 = — m, it is

plain tliat the characteristic of a decimal is negative, and one greater

than the number of ciphers between the decimal point and the first

significant figure. This is true, also, when the decimal is not the re-

ciprocal of some power of the base. Thus, log. -08 = log.
-f^
= log.

8 — log. 10 = a decimal — unity. Hence, the log. -08 must have a

negative characteristic equal to minus unity. Moreover, if we have a

decimal, such as -00278 = jxhhj1)0' ^^ ^^'^ ^^^'^ 'og- '00278 = log.

278— log. 100000. And, since log. 278 is 2 whole number, plus a cer-

tain decimal; and, since the log. 100000 is 5, the log -00278 =— 3,

whole number plus a certain decimal. We see, from this example, that the

logarithm of a decimal is obtained by regarding the decimal as a whole

number, and prefixing a negative characteristic, one greater than the num-

ber of ciphers, between the decimal point and the first significant figure.

The foregoing reasoning can be extended to any decimal whatever, be-

cause, change the decimal into an equivalent vulgar fraction, it will be

seen that the number of figure places in the denominator exceed those

in the numerator by one more than the number of ciphers between the de-

cimal point and the first significant figure of the given decimal. Now, if

the base were any other number whatever than 10, it is plain that a table

of logarithms for whole numbers would not be applicable to decimals.

3. The logarithm of a mixed decimal, such as 42-733, can he found

from a table of logarithms constructed to the base 10, b^ regarding the

mixed number as a whole number, and prefixing to the decimal p«r<

(f the logarithm found in the table a characteristic one less than the

number offigure places in the entire p)art of the mixed number.

For, log. 42-733 = log. *f^^\^ = log. 42733 — log. 1000 = 4 +
a certain decimal — 3 = 1 + a decimal.

The foregoing rule for finding the logarithm of a mixed number can

evidently be applied to any mixed number whatever.

4. The logarithms of numbers which difi"er only in the number of

annexed ciphers, will differ only in their characteristics.

Thus, the logarithms of 125, 1250, 12500, and 125000, difi'er only

in their characteristics. For, log. 1250 = log. 10 -f log. 125 = 1 -f-

log. 125 ; log. 12500 = log. 100 -f log. 125= 2 -|-log. 125 ; log. 125000
= log. 1000 + log. 125 = 3 -f log. 125.

This property of common logarithms is very important, since it saves

the trouble (as will be seen more fully hereafter) of constructing a table

for numbers whose figure places exceed four.
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APPLICATION OF COMMON LOGAPJTIIMS.

423. The base of the coiniuon system being 10, the characteristic or

entire part of the logarithms need not be written iu the tables, since, as

we have seen, it is always one less than the number of figure places iu

the given number. The decimal parts of the logarithms are then only

written in the tables, and are generally carried as far as six places.

The first vertical column on the left in the tables, contains the given

numbers ; the last vertical column, marked D, contains the tabular dif-

ference corresponding to two given logarithms, and is constructed by a

method hereafter to be explained. The intermediate vertical columns,

marked at top, 0, 1, 2, 3, &c., contain the decimal parts of logarithms.

The following table exhibits the logarithms and numbers between 100

and 130. When the given number contains four figure places, the

000000
•4321

8P«0
01 2837

7033

"5306

9384
033424

7426
041393

5323
9218

053078
6905

0GO698
'4458

SI 86

071882
5547

079181
082785

0360
9905

093422
6910

100371
3804
7210

110590
113043

3S0
4230
8046
1S29
5580
9298
2985
6640
•206

3861
7426
•963

4471
7951
1403

7071
•706

4451
8094
1707
5291
S845

5806
9335
2777
6191
9579
2940
6276

first three will be found in the first vertical column on the left, and the

fourth must be sought at the top of the page, among the numbers be-

tween and 9, inclusive. Thus, 121 may be found in the first vertical

column on the left, and the last figure of 1215 will be found in the

column marked 5 at top. The logarithm of 121 is written just oppo-

site to it iu the column marked 0; 1210 will obviously have the same
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decimal part of its logaritlim, but a characteristic greater by unity ; the

logarithm of 1215, on the other hand, must not only exceed the loga-

rithm of 121 in characteristic, but also in decimal part, and its decimal

part is then taken from the column marked 5.

TO FIND THE LOGARITHM OF A GIVEN NUMBER BELOW 10,000.

424. When the number is less than 100, the decimal part of the

logaritlim is found in the table just opposite the given number. The

characteristic will be determined by the number of figure places in the

number. For numbers above 100 and below 10,000, we have the

following

RULE.

Loohfor the first three figures of the given number in the column

marked N, and if it contains hut three, the decimal part of its loga-

rithm icill he found Just ojijmsite these three figures in the column

marked 0. But if there are only four figures in this column, opposite

the given numher, the two left handfigures above, in the same column,

where six figures aretcritten, must he prefixed to the four figures found.

Thus, the decimal part of the logarithm of 110, is 041398, and the

entire logarithm, 20i1SdS. The decimal 2mrt of the logarithm of

112 is Oid-218, the first tu-o figures being found opposite 110. The

entire logarithm is then 2-049218. The logarithm of 117 is 2-06816,

and of 120, 2079181.

425. When the given number contains four figures, look for the first

three in the column marked N. The last four of the decimal part of

its logarithm will be found just opposite, in the column marked at top

by the fourth figure. To these four figures must be prefixed two deci-

mals in the column marked zero, either found opposite the first three

figures, or above, where six figures occur. Thus, to get the logarithm

of 1213, we first find 121 in the first column, and then look just oppo-

site, in the column marked 3, where we find 3801, and prefix to it 08,

taken from the column marked 0. Hence, the logarithm of 1213 is

8-083861. The logarithm of 1283 is 3-108227, the two left hand

figures of its decimal part being found above, where six figures occur.

When, however, we pass over a decimal with a point prefixed, the

first two figures are to be found below, and not above. Thus, the loga-

rithm of 1234 is 3-091315. In like manner, the logarithm of 1231

is 3-090258. The place of the point is always supplied by zero. If
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the left hand figures were not taken below, the logarithm of 1231, 1232,

&c., would be less than the logarithm of 1230, 1229, &c.

EXAMPLES.

1. Required the logarithm of 129. Ans. 2-110590.

2. Required the logarithm of 1290. Ajis. 3410590.

3. Required the logarithm of 1297. A^is. 3-112940.

4. Required the logarithm of 1285. Ans. 3-108903.

5. Required the logarithm of 1233. A71S. 3-090963.

6. Required the logarithm of 1236. Ans. 3-092018.

7. Required the logarithm of 119. Ans. 2-075547.

8. Required the logarithm of 1191. A71S. 3-075912.

TO FIND THE LOGAPJTIOI OF A NUMBER ABOVE 10,000.

426. Cut off on the right all the figures, except the first four of the

highest denomination. Find the decimal part of these four left hand

figures, as before, and prefix a characteristic, one less than the number of

figure places in the given number previous to cutting off. jNIultiply

the tabular difference by the figures cut off on the right, and from this

product cut off as many places for decimals as there are figure places in

the multiplier. Add the result to the logarithm before found. Thus,

to find the logarithm of 129451, we cut off 51, and find the decimal

part of 1294 to be 111934. To this we prefix a characteristic, 5, and

we have 5-111934, which is truly the logarithm of 129400 (Art. 422).

Next, we multiply the tabular difference, 335, by 51, and cut off 85

from the product, 17085 ; we would then have 170 to add to 5-111934

;

but, as -85 is greater than |, we increase 170 by 1, because 171 is

nearer to 170-85 than is 170. Adding then 171, we have 5-112105

for the logarithm of 129451. In general, whenever the decimal cut

off' in the product, which results from multiplying the tabular difference

by the right hand figures of the given number, exceeds ^, the last

figure of the entire part of the product must be increased by 1.

The explanation of the process is simple. The tabular diffe-

rence expresses the difference between the logarithms of consecutive
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numbers. Thus, the logarithm of 1293 is 3-1599 ; and of 1294 is

3-1934, and their difference, 335, is written in the column marked D.

This column, it is plain, will moreover express the difference between

the logarithms of numbers which differ by 10, 100, 1000, &c. "We

have seen that the logarithm of 129400 was 5-11934, but we were

required to find the logarithm of 129451, and it remains to be seen how

much the logarithm of 129400 is to be increased. We employ the

principle, that the difference between any two numbers is to the difference

of their logarithms, as the difference between any two other numbers is

to their difference of logarithm. Hence, 129400— 129300 : 335 : :

129451— 129400 : x, or 100 : 335 : : 51 : z, in which x represents

the augment to the logarithm of 129400, to give the logarithm of

EXAMPLES.

1. Required the logarithm of 1309958. Ans. 6-117259.

In this example three places arc cut off for decimals, because we took

the difference between 1309000 and 1308000. The first term of the

proportion was then 1000.

2. Required the logarithm of 13080000. Ans. 7-116608.

3. Required the logarithm of 13087654. Aiis. 7-116862.

TO FIND A NUMBER CORRESPONDING TO A GIVEN
LOGARITHM.

427. When the decimal part of the logarithm can be found in the

tables, the first three places of the required number will be found on

the left, immediately opposite this logarithm, and in the column marked

N. The fourth figure, which is to be annexed to the three already found,

is to be taken from the number of the column in which the decimal

part of the logarithm was written. Then point off, from the left of the

number thus obtained, one more place for the entire part, than is indi-

cated by the number of units in the characteristic. Thus, the number

corresponding to the logarithm 2-107888 is 128-2, and to 1-107888 is

12-82. So, the number corresponding to the logarithm 3-088136 is

1225, and contains no decimal part.

But, when the decimal part cannot be exactly found, take the next

less logarithm from the tables, and subtract this from the given loga-

35
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ritlim. Annex two or more ciphers to this difference, and divide by

tlic tabular difference. Annex the quotient to the number correspond-

ing to the next less logarithm, and you will have the required number.

Thus, let it be required to find the number corresponding tS the lo-

garithm 4-1132800. The next less logarithm is 4-1132750, and the

corresponding number 12980 ; annexing 4 ciphers to 50, the difference

of logarithms, and dividing by 335, the tabular difference, we have a

<luotient, 149, which is to be annexed as a decimal to 12980. Hence,

the number sought is 12980-149. It is plain that we may annex as

many ciphers as we please to the difference of logarithms. The pro-

cess just described being the reverse of the preceding, requires no ex-

planation.

EXAMPLES.

1. Required the number whose logarithm is 4-07850.

2. Required the number whose logarithm is 7-116608.

11981-18.

13080000.

U. Required the number whose logarithm is 8-075550.

Ans. 119000243-85.

4. Required the number whose logarithm is 3-017249.

Ans. 1040-52.

5. Required the number whose logarithm is 3-153209.

A71S. 1423-013.

Remarks.

When only one cipher has to be annexed to the difference between

the given and next less logarithm, to make it divisible by the tabular

difference, no cipher is prefixed to the quotient. But when, (as in

example 5), two ciphers must be annexed to make the division possible,

then one cipher must be prefixed to the quotient. And when, (as in

example 3), three ciphers must be annexed, two must be prefixed to the

quotient. And, in general, the number of ciphers prefixed is one less

than the number of ciphers annexed, to make the division possible.
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GENERAL EXAMPLES.

1. Piequired the product of 1-040, by 1-055 and 10*77.

Ans. 11-81687.

For log. 1-040 = 0-017033

log. 1-055 = 0023252

log. 10-77 = 1-032216

And logarithm 1-072501 corresponds to 11-81687.

2. Eequired the quotient of 10-22 by 1016. Ans. 10-059.

For log. 10-22 = 1-009451

and \o<r. 1-016 = 0006894

and their difference, 1-002557, corresponds to 10-059.

8. Raise 11-48 to the third power. Ans. 1512-95.

For log. 11-48 = 1 059942
3

3-179826 = log. 1512-95.

4. Required the thirty-second root of 1172. Ans. 1-21871.

loo-. 1172 3 06892S
For we have ".,. = ^r^ = -095904.

o2 o2

And the corresponding number is 1-21871.

SOLUTION OF EXPONENTIAL EQUATIONS BY MEANS OF
LOGARITHMS.

428. Suppose we have the exponential equal, a^ =i'j then, x log.

a = I02;. p, and .v = ~— ; that is, the root is equal to the logarithm
^ ^ '

log. a ' ^ °

of p divided by the logarithm of a, and this root itself may be found

by means of logarithms for loc. .r = I02;. ,

''^" = losr. losr. p— lopr.

log. a.

EXAMPLES.

1. Required the value of .x in the equation, 10^ = 10.

Ans. X = 1.

For, X log. 10 = log. 10, or x (!) = 1, or x = 1.
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2. Required the value of x in the equation, 12^ = 13.

Ans. 1-032.

For, k)g. 13 = 1-113943 I log. 1-113943 :== 0-046862

and, log. 12 = 1-079181
| log. 1-079181 := 033094

0-013768.

Hence, log. x = 0-013768, or x = 1-032.

3. Required the value of x in the equation, lOO'' = 1000.

Ans. ic = |.

4. Required the value of x in the equation,, 10^ = 125.

A71S. X = 2-090910.

5. Required the value of x in the equation, 100^ = 125.

Ans. X = 1-048455.

6. Required the value of x. in the equation, 11* = 11.

Ans. a: = 1.

For, log. X = log. log. 11 — log. log. 11 = log. 1-041393 — log.

1-041393 ^ 0-017614 — 0-017614 = 0. Now, since log. x = ^,x

must be unity.

The result in this case might have been anticipated, but we have

carried out the process to show its truthfulness.

ARITHMETICAL PROGRESSION.

429. Quantities, which increase or decrease by a common diffe-

rence, are said to be in Arithmetical Progression.

Thus, 2, 4, 6, 8, 10, &c., constitute an arithmetical progression, the

common difference being 2. In like manner, 10, 8, 6, 4, 2 constitute,

also, an arithmetical progression, the common difference being 2.

When, as in the first case, the common difference is an increment, the

series is called ascending ; and when, as in the second case, the com-

mon difference is a decrement, the series is called descending. The

quantities, a, a -\- d, a -\- 2d, a + 3c7, &c., constitute an ascending

series; and a, a— d, a— 2(7, a — oc7, constitute a descending series.
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It is evident, likewise, that the quantities, a + 3(7, a -\- 2d, a + d, a,

form a descending series ; and, in general, an ascending series, when

read in reverse order, becomes a descending series, and conversely.

It is plain that the natural numbers, 1, 2, 3, 4, 5, 6, 7, &c., are in

arithmetical progression, the common diiference being 1.

It is plain that, if we know any term of an ascending series, we can

find the succeeding term by adding to the known term the common

difference. And, if we wish to find the term succeeding any known

term of a decreasing series, we have only to subtract the common diffe-

rence from the known term. In this manner, we may find any term

of a series by a continued addition or subtraction of the common

difference. But, as in a long series, this process would be tedious,

it becomes necessary to deduce a formula by which any term, as

the 71*^, may be found without going through a tedious addition or

subtraction.

FORMULA FOR THE Kth TERM.

430. The second term of the ascending series, a, a -\- d, a + 2d,

&c., is a + d ; that is, the common difference is added to the first term

one less number of times than the place of the term. The third term

is a -f 2d; that is, the first term is increased by the common difference,

taken once less than the place of the term. We discover the same law

of formation in regard to the fourth term, and all succeeding terms.

Hence, calling, the n^^ term /, wc have /= a -f (ii— l)d ; that is,

the n*"* term is equal to the first term, increased hy the common diffe-

rence, taken once less than the jyJace of the term.

If the series is decreasing, d is negative, and the formula becomes

7= a— (n— V)d. The first formula includes the second ; and the

first, therefore, is only necessary, care being taken to attribute to d its

proper sign.

For an ascending series the first term is always the least, and for a

descending series the first term is always the greatest.

The foregoing formula, l=za -\- (n— V)d, may be used to obtain

the last term, for n may represent any term whatever. When the com-

mon difference is equal to the first term, that is, d= a, then, l=za

-f na— a = na. The n^^ term is then equal to the first term into

the number of terms. When the number of terms is unity, that is,

n = 1, then. l=za, as it ought to be.

35*'
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EXAMPLES.

1. The first term of an ascending series is 2, the common difference

3, required the fifth term. Ans. 14.

2. Required the tenth term of the same series. Ans. 29.

8. Required the last term of an ascending series, of which the first

term is 10, the common difference 5, and the number of terms 11.

A71S. GO.

4. Required the eleventh term of a descending series, of which the

first term is GO, and the common difference 5. Atis. 10.

5. Required the tenth term of an ascending series, of which the

first term is 10, and the common difference 10. Ans. 100.

G. Required the last term of a decreasing series, of which the first

term is 100, the common difference 10, and the number of terms 10.

Ans. 10.

FORMULA FOR THE FIRST TERM.

431. The formula, I = a + (n— V)d, contains four quantities, and,

of course, if any three are given, the fourth can be determined. By
transposition and reduction, we have a = 1— (?i— V)d. That is, the

first term is equal to the last, or n*"* tet-m, m inns the number of terms,

less one, 'into the common difference.

The formula is applicable both to an ascending and to a descending

series, by attributing the proper sign to d.

EXAMPLES.

1. The fifth term of an ascending series is 14, and the common
difference 3. Required the first term. Ans. 2.

2. The tenth term of the same series is 29. Required the first term.

Ans. 2.

3. Required the first term of an ascending series, whose last term is

60, common difference 5, and the number of terms 11. Ans. 10.

4. Required the first term of a descending series, of which the last

term is 10, the common difference 5, and the number of terms 11.

Ans. 60.
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FORMULA FOE THE COMMON DIFFERENCE.

432. From the formula, I = a + (n — l)c7, we get d = , that

is, the common difference is equal to the last term, viinus the first term,

divided hy the number of terms less one.

For a descending series, d is negative, and, by multiplying both

members by minus unity, we get d = -, that is, the common dif-

ference of a descending series 'is equal to the first term, minus the last

term, divided hy the number of terms less one When I =z a, d will be

zero, as it ought to be. When n = 1, d = cc. The symbol of absurdity

ought to appear under the hypothesis n := 1 ; for, when there is but

one term, there can be no common diiFerencc, and therefore the assump-

tion of its existence is absurd.

1. The last term is 50, the first term 10, and the number of terms 8.

Required the common difference. Ans. 20.

2. The last term is 10, the first term 50, and the number of terms 3.

Required the common difference. Ans. 20.

3. The last term is 12, the first term 1, and the number of terms 4.

Required the common difference. Ans. y

.

FORMULA FOR THE NUMBER OF TERMS.

433. From I = a -\- (n— l)d, we get n = 1 -| — , that is, the

number of terms is equal to unity, added to the quotient arising from
dividing the difference between the first and last terms by the common

difference.

The formula is applicable to a decreasing series, by attributing the

appropriate sign to d; when I = a, n will be equal to 1, when d = 0,

n = cc .

EXAMPLES.

1. The last term is 50, the first term 10, and the common difference

20. Required the number of terms. Ans. 3.
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2. The kst term is 12, the first term 1, and the common difference

y. Required the number of terms. Ans. 4.

3. The last term is 50, the first term 10, and the common difference

1. Required the number of terms. Ans. 41.

FORMULA FOR THE SUM OF THE TERMS.

434. We might get the sum of the terms by actually performing the

addition ; but, when the series contains many terms, this operation would

be difficult, and we are enabled to deduce a formula which abridges the

work. This formula is deduced from the remarkable property of an

arithmetical progression, that the sum of any two terms at equal distance

from the two extremes is equal to the sum of the two extremes. To

show this, any term, as the m^^, counting from the first term, will be

expressed by a -|- (m— l)c7, and the m^^ term, counting from the right,

will be expressed by I— (m— l)d; and the sum of these terms is

plainly a + I, a denoting the first term and I the last term.

Calling S the sum of the terms, we have S'=a+ (a+ <:?)+ («+ 2(7)

+ (a + 3(7) -\- (a + 4d) .... to 7, and reversing the series, S —
/-j-(I—d) + (I— 2(7) + (7— 3(7) . . . to rt. Adding these equations

member by member, we get 2S = (a + 7) + (a + 7) + (a + 7) 4-

&c., up to 71 terms.

Hence, 2s = (a + 7)«, or s = ^^—
, that is, the sum of the

terms is equal to the half sum of the first and last terms, into the num-

her of terms.

When 11 = 2, s = a -{-I, as it ought to be. When 7 = a, s = na,

the common difference is then zero. When ?i= 4, s ^ 2 (a -|- I), as it

ought to be. When ?i = 0, s = 0, as it ought to be.

The sum of the terms can be determined when a, I and n are known,

or can be found from the data.

1. Find the sum of the natural numbers, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Ans. 45.

2. The first term of a series is 10, the last term 100, and the

number of terms 5. Required the sum of the terms.

Ans. 275.
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3. The first term of an ascending series is 5, the common difference

5, and the number of terms 5. Required the sum of the terms.

A71S. 75.

4. The last term of an ascending series is 60, the number of terms

4, and the common difference 2. Required the sum of the terms.

Ans. 228.

5. The last term of a descending series is 60, the number of terms

4, and the common difference 2. Required the sum of the terms.

Ans. 252.

6. The last term of an ascending series is 50, the first term 6, and

the common difference 2. Required the sum of the terms.

Ans. 644.

7. Find s, when a, d, and n, are known.

Ans. S = i\2a + (n— l)d\n.

8. The first term of an ascending series is 1, the common differ-

ence 1, and the number of terms 10. Required the sum of the

terms. Ans. 55.

9. How many strokes does the common clock strike in 12 hours ?

Ans. 78.

10. A body falling in vacuo will pass over about 16 feet the first

second, 48 the next second, 80 the third second, &c. How far will

it fall in 20 seconds, and what space will it pass over in the last second ?

Ans. Entire space, 6400 feet; in last second, 624 feet.

11. A traveller goes 5 miles the first day, 15 the second, 25 the

third, &c. Required the space that will have been passed over at the

end of the tenth day. Ayis. 500 miles.

12. Find the sum of the natural numbers, 1, 2, 3, &c., up to n terms.

-4ns. i n(n -i- 1).

13. Find the sum of the odd numbers, 1, 3, 5, 7, &c., up to n terms

Ans. n^.

14. Find the sum of the even numbers, 2, 4, 6, 8, 10, &e., up to n
terms. Ans. n (n + 1).

15. Find the sum of the numbers, 6, 12, 18, 24, &c., up to w terms.

Ans. 3n (n + 1).
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16. Find the sum of the odd uumbers, 1, 2, 8, &c., up to 73.

Ans. 5329.

17. Find the sum of the even numbers, 2, 4, 6, &c., up to twenty-

five terms. Ans. 650.

18. Find the sum of the numbers, 6, 12, 18, &c., up to the num-

ber 72. Ans. 468.

19. Find s, when I, d and n, are known.

Ans. ^ = l\2l—{n— V)d\n.

TO FIND THE ARITHMETICAL MEAN.

435. The arithmetical mean between several quantities, is the quo-

tient arising from dividing their sum by their number. The arithmeti-

cal mean between two quantities, m and w, is half their sum, that is,

i (m + n). We have seen that a geometric mean between two quantities

is the square root of their product.

From the definition, the arithmetical mean between any number of

terms in progression must be — = ^ = J (a -j- ?), that is, the

arithmetical mean is equal to the half sum of the extremes.

Corollary.

The first and last terms may be found when the arithmetical mean,

the number of terms, and the common difi"erence, are known.

For, from S = ^^
, we get a = (a + {n — 1) d), or

a = 2^l— a— {n— r)d. Hence, a = M— ^^^^=^.

And since Z = a + {n— V)d, we get Z = M + ^^

The employment of the arithmetical mean frequently facilitates

the solution of a problem in progression.
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EXAMPLES.

1. The sum of four numbers in arithmetical progression is 20, and

their continued product, 384. What are the numbers?

Ans. 2, 4, 6, 8.

For,
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INSERTION OF MEANS BETWEEN THE EXTREMES OF A
PROPORTION.

436. The formula, d = -, enables us to insert any number of
^ n— 1' •'

means, when the extremes are known. Let it be required to insert 3

means between 1 and 9. Then a := 1, and Z= 9, and, since 3 means

are to be introduced between 1 and 9, n must be 5. Hence, d =
9 1

:= 2. Knowing the common difference, the terms succeeding

the first can be readily formed. They are 3, 5, 7 ; and the 5 terms of

the proportion are 1, 3, 5, 7, 9.

EXAMPLES.

1. Required 15 means between 1 and 9.

Alls, d = i. Series, 1 . 1* . 2 . 2^ . 3 . 3^ . 4 . 4J . 5 . 5^ . 6 . 6K
7.7^8.81.9.

It is plain that an infinite number of means may be inserted between

1 and 9, by making the common difference indefinitely small.

2. Insert 10 means between 1 and 2.

Ans. d = j\. Series, 1
. l-^V • 1A • Itt • Itt • h\ h\ • Irr • h\ •

1_9_.
. llfl . 2.

GENERAL EXAMPLES.

1. Find 4 numbers in arithmetical progression, whose sum is 14,

and the sum of whose squares is 54. Ans. 2, 3, 4, 5.

Let y— 3a; = lesser extreme, and let 2x = common difference.

Then the other terms are y— x, i/ + x and ^ + Sx. Hence, by the

conditions, y— Bx + i/— x -\- i/ + x + i/ + 3x^4y = 14, or y =
3^. And (y— Sxy + (y— xf+ (y + xY + (y + Sx)' = 4/ +
20x2 ^ 54^ and eliminating f, we have 49 + 20a;' = 54, or x^ = I.

Then, x = ± ^. From which the above series.

2. Find 5 numbers in arithmetical progression, whose sum is 40, and

the sum of whose squares is 410. Ans. 2, 5, 8, 11, 14.

Let y— 4a; = lesser extreme, and 2x = common difference. Then

the terms will be represented by y— 4a:, y— 2a;, y, y + 2a;, y + 4a;.
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3. Find 4 numbers in arithmetical progression, whereof the product

of the extremes is 700, and the product of the means 750.

Ans. 20, 25, 30, 351

4. The sum of 3 numbers in arithmetical progression is 18, and the

sum of their squares 116. What are the numbers? Ans. 4, 6, 8.

Let y represent the mean, and x the common difference, then will

7/
—X, y andy+a;, represent the three terms of the progression.

5. A and B are separated by a distance of 45 miles. A travels

towards B at the rate of 1 mile the first hour, 2 miles the second hour,

3 miles the third hour, &c. B travels towards A at the rate of 10

miles the first hour, 8 miles the second hour, 6 miles the third hour,

&c. When will they come together ?

Ans. At the end of the fifth hour, and also at the end of the

eighteenth hour.

The second value needs explanation. The formula Z= a

—

{ix— l)c^.

which gives the distance travelled by B during the Ji*" hour, shows that

B does not travel at all the sixth hour. And since, when w^ 6, I is

negative, we conclude that B turns back, and travels in the contrary

direction after the sixth hour.

15 miles

A P B M

At the end of the fifth hour the two travellers were together at P,

15 miles from A. In 13 more hours the traveller A will be 156 miles

from P, at a point M. The traveller B rests during the sixth hour, and

at the beginning of the seventh hour turns back in pursuit of A, and

at the end of the eighteenth hour from the time of his first starting

from B, he will also be at M, 156 miles from B. These results are

easily deduced from the formulae.

When the travellers come together at M, A will have travelled 17

miles, and B 201 miles.

The problem explains most satisfactorily the meaning of a negative

solution, and shows that, when distance is the thing to be determined,

the negative sign always implies a change of direction.

6. A fugitive from justice has one hour the start of the officers of

the law, and travels uniformly at the rate of 1% miles per hour. The

officers travel 5 miles the first hour, 6 the second, 7 the third, &c. How
36
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long will it be from tlie time of tlie fugitive's escape until his arrest

again ? Ans. 9 hours, n = 8.

7. The mean of seven terms in arithmetical progression is 6, and the

product of the extremes 27. What is the common diflference, and

what the series ? Ans. d = 1. Series, 3, 4, 5, 6, 7, 8, 9.

8. A liquor-seller makes 24 gallons of a mixture of water, brandy,

and rum. The number of gallons of the three fluids constitute a pro-

gression, of which the number of gallons of water is the least extreme,

and that of rum the greatest extreme. The sum of the gallons of water

and brandy is equal to the number of gallons of rum. Required the

quantity of each. Ans. 4, 8, and 12.

9. A man sold a horse upon condition that he should receive 1 cent

for the first nail in his shoes, 11 cents for the second nail, 21 cents for

the third nail, &c., for the 32 nails in his shoes. How much did he

get for him ? Ans. $49 and 92 cents.

10. One hundred stones are placed on the same straight line, 4 yards

apart. How far will a person have to walk, who puts them one by one

in a basket placed on the same straight line, 4 yards from the first stone,

and 8 yards from the second stone : the person being supposed to start

from the basket ? Ans. 22 miles, and 1680 yards.

11. Same problem as last, except that the basket is placed at the

first stone. A7is. 22 miles, and 880 yards.

12. Same problem as 10th, except that the carrier is at the other end

of the line, at the 100th stone. Required the last term, the common

difierence, the first term and the entire distance ?

A71S. S = 22 miles, 1280 yards, I = S, a = 792.

The progression begins with the second term.

GEOMETRICAL PROGRESSION.

437. A Geometrical Progression is a series of terms, any one of

which is formed from that which immediately precedes, by multiplying

by a constant quantity. When the constant multiplier is greater than
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unity, the series is an increasing progression. Thus 1, 2, 4, 8, 16, 32,

64, &c., constitute an increasing progression, the constant multiplier or

ratio of the progression being 2. And 32, 16, 8, 4, 2, 1, is a decreas-

ing progression, with the ratio \. The ratio of a decreasing progression

is always unity divided by an entire quantity. It is evident that an

increasing progression taken in reverse order will be a decreasing pro-

gression, and that the ratio of the latter progression will be the recipro-

cal of the former. The converse of this is also plainly true. Thus 6,

-, -^, -3, &c., is a decreasing progression whose ratio is -, a, being

supposed an entire quantity, and -3, -^, -, and I, constitute an in-

creasing progression, whose ratio is a.

It is plain that a Geometrical Progression differs from a Geometrical

Proportion only in its number of terms.

FORMULA FOR THE Klh TERM.

438. Let the first term be a, and r the ratio of the progression : then

ar will be the second term, ar^ the third, ai^ the fourth, and so on.

That is, each term is equal to the first term, multiplied by the ratio

raised to a power denoted by the number of terms, which precede the

required term. Hence, if I represent the «*• term, we must have I ^
ar°-', that is, the n*" term is equal to the first term, multiplied hy the

ratio raised to the (n—1) power. I may represent the last term, in

which case n— 1 will be the number of terms less one. The formula,

I =z ar^^, will enable us to determine any term, when the number of

preceding terms, the ratio and the first term are known. When n = 1,

we have I =1 a ; when n ^ 2, I = ar, &c. When a = 0, I also =0;
wh&a. r =z 0,1 also = ; when a^r,l = r".

*

EXAMPLES.

1. Find the last term of the progression, 1, 2, 4, &c., carried on to

II terms inclusive. Ans. I = 1024.

2. Find the h*'^ term of the progression, 3, 9, 27, &c. Ans. 3°.

3. Find the 21st term of the progression, 2, 8, 32, 128, &c.

Ans. 2199023255552.

4. Find the 6th term of the series, 64, 16, 4, &c. Ans. Jg.
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The n}^ term being made up of a product and a power, is much

greater in geometrical than in arithmetical progression, when r is ^ 1,

and much less in the former than in the latter, when i'<^l. Thus, a

corresponding example to 3, in arithmetical progression, with the first

term 2 and common difference 4, would give 82 for the 21st term;

and the answer to a corresponding problem to 4, in arithmetical pro-

gression, would be 44.

FORMULA FOR THE RATIO OF THE PROGRESSION.

439. The equation, I = ar°~\ gives r = \ /—

,

that is, the ratio is

equal to the (n— ly^ root of the quotient arising from dividing the to^^

term hy the \st term.

This formula can be used when n, I, and a, are known. When I = a,

we have r= 1 ; when n = 1, r = oo ; when n = 2, /• = —

.

EXAMPLES.

1. The 3d term of a geometrical series is 256, and the first term 4.

What is the ratio? Ans. r = 8.

2. The fourth term of a geometrical series is 2401, and the first

term 7. Required the ratio. Ans. r = 7.

3. The first term of a geometrical series is 50, and the fourth term

6250. Required the ratio. Ans. r = 5.

4. The first term of a geometrical series is 6250, and the fourth

term 50. Required the ratio. Ans. r = ^.

5. The first term of a geometrical series is a, and the (m + 1)*''

term a^. Required the ratio. Ans. y/a.

Corollary.

440. The formula, r =z \ /— , enables us to insert any number of

means between two extremes. If we wish to introduce m means be-

tween a and I, then the total number of terms will be m -f 2. Hence,
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Thus, let it be
»(+ ! / /

n—l=m + 2 — \=zm + 1, and r = Kj —

.

required to insert 3 means between 2 and 32 ; then, r = V 2* =^ \/16

= 2. And the series is 2, 4, 8, 16, 32.

EXAMPLES.

1. Find three means between yW and 1728, and the ratio of the pro-

gression, Ans. 1 . 12 . 144, and r =z 12.

Ans. 40 and 4800.

FORMULA FOR THE SUM OF THE TERMS.

441. If we multiply a series of "terms in Geometrical Progression

by the ratio, a new series will be produced, whose first term will be the

same as the second of the old series, and whose other terms will all

be the same as the corresponding terms of the original series, except

its last term. It is plain, then, that if the old series be subtracted

from the new, all the terms will be cancelled except the first of the old

series and the last of the new.

Take, for example, the series, 3, 9, 27, 81, 243.

And multiply each term by the ratio, 9, 27, 81, 243, 729.

Subtracting the first from the 3, 729.

second series, we have left but two terms.

Let S represent the sum of n terms in geometrical progression.

Then, S = a -f ar + ar^ + ar^ or""'.

Multiply by r, and we have Sr= ar + ar'^ + ar^ ar^~^ -f ar^.

Hence, Sr— S =z ar^— a, and S =—^^ =—

.

r— 1

That is, the sum of the terms is equal to the first term into the diffe-

rence hctioeen unity and the ratio raised to a power denoted hy the

number of terms, and this product divided hy the ratio, less 1. This

formula can be used when the first term, the ratio, and number of

terms are known, or can be determined. Since I = ar'''^ then,

Ir z= ar^, and the formula may be written S =z ^ ; that is, the
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sum of the terms is equal to the last, or n"", term into the ratio, minus

the first term, and this difference divided hij the ratio, less 1.

When n = 0, the second members of the equations in S and Sr will

cancel each other, and give S = Oj but when r = 1, the equation in

S becomes S = na, whilst the formula, S= —^ ~, becomes S = g.

This is generally the symbol of indetermination, but, in the present in-

stance, indicates a vanishing fraction. The common factor to the two

terms of the fraction is plainly r— 1, because r— 1 is an exact divisor

of the numerator. Performing the division, we have S = —

—

"~
^

= a (r""' + r"-^ + r°~^ + r + 1). Now, making r= l,

we have S = 7ia

442. When the progression is decreasing, 8r is less than S ; hence,

to find S, we must take Sr from S. Then, S— Sr= a— ar", or

ft /I
I

7'^'^ ft 1_ I ly*

S =—!q =—

=

. that is, the sum of the terms of a de-
1— r 1 — r

•'

creasing progression is equal to the first term into unity, minus the last,

or n"", ter7n into the ratio, and this difference, divided hy one, minus

the ratio.

EXAMPLES.

1. The first term is 2, the ratio 2, and the number of terms 9.

What is the sum of the terms ? Ans. 1022.

2. The first term is 512, the last term 2. Required the sum of the

9 first terms of the progression. » Ans. 1022.

3. Required the sum of the series, 1 + x -\- x^ -^ x^ cc"-'.

a;" —

1

x— 1

4. Required the sum of the series, a;""' + cc""^ + .... a; + 1.

Ans.
1 — x

5. Required the sum of the series, cc""' + a;"~^y -{- x'"~^y^ . . .

^ ^
A71S. ^

, or ^
y—x x—y

6. Required the sum of the series, x"^ -f ax + a^.

. a^— x^ x^— rr
Ans. , or
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("r"— 1)
443. The two equations, I = ar''~\ and s = a =—, contain

five quantities, any two of which can be determined when the other

three are known. Thus, when a, I and n, are known, we obtain, by

combining these equations, and eliminating r,
—

ive get a = -^In like manner, by eliminating ?, we get a = -
^

; and, by eli-

minating a, we find I =

AN INFINITE DECREASING PROGRESSION.

444. The formula for the sum of the terms of a decreasing progres-

sion takes a remarkable form when the series is infinite.

For, S = t; may be written, S = -z .

1 — r '' 1 — r 1 — r

Now, since r is a fraction whose numerator is unity, like the fraction

r° .

1, it is plain that, when «. = oo , r° will be zero. Hence, = will

be zero, and that part of the formula may be neglected when the num-

ber of the terms is infinite, and we may write S = z: ; that is, the
1— r

sum of the terms of an infinite decreasing progression is equal to the

first term divided bi/ unity, minus the ratio of progressions.

This formula will give the limit of the series, that is, a value which

the sum of the terms cannot exceed. Thus, the decimal -33333, &c.,

may approach infinitely near to -i, but can never exceed it.

EXAMPLES.

1. Find the limit of the value of the decimal, -666666, &c.

For a = -j%, and r = ^\; hence, S = '"
,

= « = |.
•• To

2. Find the limit of the value of the decimal, •1111111, &c.

Ans. ^.

3. Find the limit of the value of the decimal, -55555, &c.
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4. Find the limit of the value of -99999, &c. Ans. 1.

5. Find the limit of the value of -88888, &c. A71S. |.

6. Find the limit of the value of the series, 1 + | + t s + bV + ^^^

Ans. l+i

7. Find the limit of the value of J + j\ + g^j &c. Ans. f.

8. Find the limit of the value of the series, 20 + 4 + | + 5% + &c.

Ans. 25.

9. Find the limit of the value of f + -^^ + ji-g + &c.

A71S. 1.

10. How much will the sum of the series, | + ^-^, &c., differ from

unity, when four terms only are taken ? Ans. By g^^

Use the expression, =
, which can only be neglected when w = oo .

11. Find the sum of the series, 42 + 6 + f + 4^^+ -gfj, &c.

^ Ans. 49.

12. Find the limit of the value of 6 -f f + /^ + ^fg + &c.

Ans. 7.

13. By how much will the sum of the series, ^ + ^ -h 4% + 3I3 -f-

&c., differ from 7, when three terms only are taken.

Ans. By ^\.

GENERAL EXAMPLES.

1. The first term of a geometric progression is 4, the last term 32,

and the number of terms 4. Required the sum of the terms.

Ans. 60.

2. There are three quantities in geometric progression, their sum is

a, and the sum of their squares, b^. What are the quantities ?

a^ _ J2 ^2 + 52 ^lOa'b^— Sb'— Sa*
Ans. y = ———— , X ^ —-. -. , z =

"^ 2a ' 4a ^ 4a '

^lOa^P— Sb'— Sa'

4a 4a

For, let X, y and z, denote the three quantities. Then, x -^y -\- z

z=a,y'^=xz, and x^ -\- y^ + z^ = W. Transposing y to the second

member, and squaring the first equation, we get x^ + 2xz + z^^a^—
lay-^-y^^ which, combined with the second, gives cc^ + ^ + 2^= a^—
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2ay. Subtract the third equation from this, and solve with reference

0,2 52
to y; we will find then,y = —^ . The third equation gives x^ \- ^

= h^— y^. Subtract from this the equation, 2xz = Ix^. Then, 01?—
2a;2; \- ^ =.W-— 3^^, and, taking the square root of both members, we

find, X— z = s/i>^— 3y (M) ; but, from the first equation, x -\- z =
a— y (N). Adding and substracting (M) from (N), we get x =
a—y^ ^h^— ^f a? + 1/ ^l^a'U" — Sh* — S^'= — ] 2 , and z —

2 4a 4a

a—y— ^b'— Sy^ _ ^' + ^'_ -v/ lt'«'^'— 3i'— 3a*

2
^ 4a

~
I^

The problem might have been solved by the ordinary method of eli-

mination, but it would have led to an equation of the fourth degree.

3. Two travellers were separated by a distance of 36 miles. The

one in advance travelled 1 mile the first day, 5 miles the second day,

9 the third day, and so on. The one in the rear travelled 1 mile the

first day, and increasing his rate in a geometrical ratio, travelled 64

miles on the seventh day, when he overtook the advanced traveller.

Required the uniform rate of increase of the second traveller's daily

distance. Ans. r = 2 miles.

4. Find r when s, a and I are known. s—r
Problem 3 is but a particular case of problem 4.

5. There are four quantities in geometric progression, the sum of the

first two is a, and of the last two, b. What is the ratio and what are

the numbers ?

. /X
T^T

, a V a h
Ans. r =\ / — . Numbers, =1, =:, =,

and

6. There are four numbers in geometric progression, the sum of the

first two is 30, and of the last two, 750. What is the ratio, and what

are the numbers ? Ans. r = 5. Numbers, 5, 25, 125 and 625.
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7. There are three quantities in geometric progression, the first is a,

and the second h. Required the third. . h^

a

8. There are three numbers in geometric progression, the first is 4,

and the second 20. Required the third. Ans. 100.

9. Find a, when ?, r and S are known.

Ans. a = S— (S— T)r.

10. The ratio of a geometric progression is 5, the sum of the terms

780, and the last term 625. Required the first term. Ans. 5.

11. Find I, when a, r and S are known.

Ans. I = S .

12. A rich, but charitable man, gave $20 to the American Tract

Society, twice as much to the Board of Foreign Missions, four times as

much to the Board of Domestic Missions, and so on in the same ratio.

His last contribution was to his own church, and his entire charity

amounted to $1020. How much did he give his church ?

V Ans. $520.

13. A man sold a horse upon the following terms : He was to receive

one cent for the first nail in the horse's shoes, two cents for the second

nail, four cents for the third, and so on for the 32 nails in the horse's

shoes. Required the price of the horse.

Ans. 4,294,967,295 cents.

14.. A gentleman made a donation to a charitable institution, upon

the following conditions : Five hundred dollars were to be received the

first year, $250 the second year, $125 the third year, and so on forever.

Required the amount of the donation. Ans. $1000.

15. A gentleman wishes to bequeath $3000 to a Benevolent Associa-

tion in the following manner : Two thousand dollars to be given the

first year to meet the present wants of the association, and the donation

every year after, forever, to be in a decreasing ratio. What must the

ratio be ? Ans. J.

16. A gentleman invested $1000 for the benefit of a charitable

institution, so that one half less should be drawn from it each year than

the preceding year, forever. How much must be drawn the first year ?

Ans. $500.



INEQUALITIES. 431

INEQUALITIES.

445. An inequality is an expression to signify that two quantities are

unequal to each other. Thus, A^ B, is an inequality indicating that

A is greater than B. For equalities, it matters not on which side of the

sign of equality the two quantities are written. Thus, A = B may be

written B = A. But, for inequalities, there can be plainly no trans-

position of the two quantities without a corresponding inversion of the

sign. In the expression, A^ B, if A be changed to the second mem-
ber, and B to the first, there must be an inversion of the sign. For, let

m be the quantity which, added to B, makes it equal to A, then, A =
B + m, or B + m = A. Then B <^ A. So, B and A have changed

places, with a corresponding inversion of sign.

Inequalities are used to determine the limits between which quantities

are found, and are of frequent application in the higher mathematics.

As a simple illustration, suppose we have the two inequalities, a;^ 5,

and X <^ 10. We see that x must be some number between 5 and 10,

and these numbers are the Umifs to its values. When the enunciation

of the problem restricts the solution to positive quantities, there are but

two limits, the superior positive limit, and the inferior positive limit.

So, if the solution be restricted to negative quantities, there are but two

limits, the superior negative limit, and the inferior negative limit. lYi

general, however, there are four limits, two superior and two inferior.

Two inequalities are said to subsist in the same sense, when the

greater quantity lies on the same side of the sign in both of them; and

they subsist in a contrary sense, when the greater quantity in one ine-

quality lies on a different side of the sign from that occupied by the

greater quantity in the other inequality.

Thus, 4^2, and 5^3, subsist in the same sense; so also, 2 <^ 4,

and 3 <^ 5. But 4^2, and 3 <^ 5, subsist in a contrary sense.

When two quantities are negative, that one is the least, algebraically,

which contains the greatest number of units. Thus, — 15 <C— l^j
'

-5>-7.

446. There are ten important principles, belonging to the subject of

inequalities, which require to be demonstrated.

1. If the same quantity be added to, or subtracted from, the two mem-

bers of an inequality, the resulting inequality will subsist in the same

sense.
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For, let A ^ B, and m the difference between A and B, then, A =
B + m. Now, add or subtract the same quantity, c, from both members,

and there results Adbc = B + m=bc. Hence, of course, A ± c^
B ± c, and the inequality subsists in the same sense.

This principle enables us to transpose terms from one member of the

inequality to the other. Take, x -\- 2^ a ; add — 2 to both members,

and there results x^ a— 2. So, transposition is effected in inequalities,

as in equations, by a change of sign.

2. If the two members of an inequality are multiplied by a positive

quantity, the resulting inequality will subsist in the same sense.

For, let A^ B, and A = B + m. Multiply both members by c,

and we get Ac = Be -f mc. Hence, Ac^ Be. This principle serves

to free the fractions, if any, of their denominators.

Take -^ -r-'^l/. Clearing of fractions, there results 2x — a^
A1j\

3. If both members of an inequality are divided by a positive quan-

tity, the resulting inequality will subsist in the same sense.

For, let A ]> B, and m the difference between A and B. Then A =

B + m. Dividing both members by c, there results, — = 1 .

Hence, —>—

.

The last principle serves to clear the unknown quantity of its coeffi-

cient when positive. Take, 2a;^ a + 4&^, then, x^ — .

Li

The three foregoing principles serve to solve inequalities, when the

coefficient of the unknown quantity can be made positive.

4. If two inequalities, subsisting in the same sense, are added

together, member by member, the resulting inequality will subsist in

the same sense.

For, let A > B, and C > D. Let m be the difference between A
and B, and n the difference between C and D. Then, A = B + m,

and C = I) -f n. Adding the two equations, member by member,

there results A + C = B + D + m + «. Hence, A + C > B + D.

5. If an inequality be multiplied by a negative quantity, the result-

ing inequality will subsist in a contrary sense.

For, let A ^ B, or A = B + m. Multiply both members by — c,

and there results — Ac = — Be— w, or m— Ac = — Be. Hence,
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Ac being numerically greater than Be, we have, algebraically, — Ac <^
— Be.

The foregoing principles enab'e us to eliminate between inequalities

as between equalities, when we have two inequalities involving two un-

known quantities whose signs are known, and that of one of them in

one inequality contrary to that of the same unknown quantity in the

other inequality.

Take x + y > 12,

Adding member by member we get x^ 10, and this substituted in

the first equation, gives y> 2. Let x = 10 + m. Then, from the

2d equation i/ <^2 + m. The value of i/ is then fixed between the

limits of 2 and 2 + m.

6. If two inequalities, subsisting in the same sen.-: •, are subtracted

member by member, the resulting inequality may subsist in the same or

a contrary sense.

For, let A > B, and C > D. Then, A = B + w, and C = D + ».

Subtracting member by member, there results A— C = B + m—
(D + n); or. A— C = B— D + m— «.

Now, if m ^ «, A— C will be equal to B— D increased by a posi-

tive quantity, and, of course, will be greater than it. But, if 71 "^ m,

A— C will not be equal to B— D, until it has been diminished by the

diflference between n and m.

In that case, A— C < B — D.

Take, 8 > 4, m = 4,

6 > 3, n = 3.

8— 6>1.

The resulting equality subsists in the same sense, since m > n.

But, take 8 > 6, m = 2,

6 > 1, n = 5.

8 — 6 < 5.

The resulting inequality subsists in a contrary sense, since n > m.

8. If both members of an inequality are essentially positive, they

may be squared without altering the sense of the inequality.

For, let A > B, or A = B -f m, then A^ = B^ + 2Bm + m^.

Hence, A^> B^
37 2c
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9. If the two members of an inequality have contrary signs, the re-

sulting inequality, after squaring, may silhsist in the same or a contrary

For, let A >— B, or A = — B + m. Then, A' = B^— 2Bm +
m^ If m^ > 2Bm, then, A^^B^; for, A'' is equal to B^, increased

by the difference between m^ and 2Bm. But, if ni^ <^ 2B?k, then, A^

<^ B'^ by the difference between 2Bm and m^.

Take, 3 >— 2 ; then, m =5, m^ = 25, and 2Bm= 20.

Squaring, we have, 9 > 4, since m^ > 2Bm.

But take, 3 > — 6 ; then m = 9, m^= 81, and 2Bm = 108.

Squaring, we get, 9 <C 36, an inverted sign, since m^ < 2Bm.

When, therefore, the sign of either member is unknown, it is not

permitted to square the inequality.

10. When the two members of an inequality are divided by a nega-

tive quantity, the resulting inequality will subsist in a contrary sense.

For, let A ^ B, or A = B + m. Dividing both members by— c,

there results = . Since is numerically greater
c c c c

than , it must be algebraically less.
c

For equations of high degrees there are generally four limits : a supe-

rior positive and a superior negative limit, and an inferior positive and

an inferior negative limit. But the conditions of the problem may re-

strict the solutions to two limits, and even to one limit.

A single equation of the first degree can have but one limit, this may

be superior or inferior, positive or negative. Limits are determined by

means of inequalities.

EXAMPLES.

1. The value of x in an equation is such that, twice the value in-

creased by unity cannot be less than 7. What is the lower limit of

the value ? We have, from the conditions, 2a; -f 1^ 7. Hence, a;^ 3.

The inferior positive limit is then 3, and any number above 3 may be

the value required.

2. The value of cc in a simple equation of the first degree is known

to be such, that twice the value, plus unity, is greater than 7, and that
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three times the value, diminished by 4, is less than 11. Between what

limits does the value lie ?

Ans. Superior positive limit, 5; inferior positive limit, 3.

If the value be known to be a whole number, 4 must be that number.

3. A person desirous of giving some cents to a certain number of

beggars, found on examination that, to give them three cents apiece,

would require more than double of what he had about him, and that, to

give them 2 cents apiece, would require more than the difference be-

tween all he had and 35 cents. How many beggars were there, and

how many cents had the person ?

From the conditions, 3a; ^ 2y,

and, 2a; ^35— y.

Multiplying the second inequality by 2, and adding member by men

ber, there results, 7x ^ 70, or a;^ 10. This value substituted in

the first inequality, gives y <C 15 + I"; ^ representing the excess of

X over 10. The value of x, substituted in the second inequality, gives

y > 35 — 20 — 2m; or y > 15 — 2m. Suppose m = J, then.

y < 151, and 7/ > 14.

4. A person desiring to give some money to 11 beggars, found that,

to give them 3 cents apiece, would require more than twice as much
money as he had about him, and that, to give them 2 cents apiece,

would require more than the difference between 37 cents and the num-

ber of cents about him. Required the number of cents he had.

A71S. X <[ 16 J, and a; ^ 15; hence, x = 16.

The nature of the problem makes the solution exact in this case, but

it is very seldom so.

5. Find the negative limits of x in the inequalities,

cc-f 3<— 5,

a;— 3>— 7.

Ans. x<^— 8, and x^— 4.

6. Find the limit of the value of x in the inequality, ax+b -^ c

-yd^fx. d—l— c
Ans. Inienor limit, r—

«+/
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GENEKAL THEORY OF EQUATIONS.

447. The general theory of equations has for its object, the investi-

gation of properties common to equations of every degree and of every

form.

We will confine ourselves mainly to the examination of equations in-

volving but one unknown quantity.

Tke most general form of an equation of the m*'' degree with one

unknown quantity, is »"• -f Px-"-' + Qx'"-^ + Rx"-'' -f Tie

-f U = 0.

The coefficient of the first term is plus unity, and the other coeffi-

cients, positive or negative, entire or fractional, rational or irrational.

A value has been defined to be that which, substituted for the un-

known quantity, will make the two members equal to each other. Since,

in the general equation of the m*'' degree, the second member is zero, a

value substituted for x, must reduce the first member to zero also.

Hence, in our discussion, we may define a value to be that which, sub-

stituted for the unknown quantity in the equation, will reduce the first

member to zero.

GENEKAL PROPERTIES OF EQUATIONS.

First Property.

448. If any quantity, a, be a value of x in the equation, a;" + Pa;""'

+ . . . Taj -f U = 0, the first member of this equation will be exactly

divisible by a;— a.

Fffr, let Q' be the quotient resulting from the division of the first

member by a:;— a, and let R' be the remainder, if any, after division.

We shall then have the identical equation, x"" -f Pa;""' -f Qx'"~^+ ....

-f- Ta; -f U = Q' (a;— a) -f R'. But, for x= a, the first member is,

by hypothesis, equal to zero, and the second member reduces to R'.

Hence, we have = + R', and, therefore, R' = 0, and the division

is exact.

Second Property.

449. If the first member of an equation, of the form of a:" + Px"^'

+ Qx"-^ -t- . . . . Tx -f- U = 0, be divisible by x— a, then a will be

a value in this e(juation.
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For, calling Q' the quotient, we will have x^ + Px""' -j- Qx""^ -f-

. . . . Ta; + U= Q(x— a). Hence, then, Q'(.r— a) = 0. But, when
the product of two factors is equal to zero, the equation can he satisfied

by placing either factor equal to zero. We have then a right to place

X— a = 0, from which there results x = a. Therefore, a is a value

in the equation, Q'(aj — «) = 0, and, consequently, in the given

equation.

Corollary.

1st. It follows that, in order to ascertain whether any polynomial is

divisible by x— a, we have only to substitute a for x, wherever x

occurs, and see whether the polynomial reduces to zero.

2d. Hence, also, if a polynomial is divisible by x— a, a will be a

value in the equation formed by placing the polynomial equal to zero.

3d. We may also diminish the degree of an equation, when we know

one or more of its values, by dividing its first member successively by

the binomial factors corresponding to these values. The division by

each binomial factor will reduce the degree of the equation by unity.

4th. Numerical equations can frequently be solved by means of the

first two properties. Literal equations can also be solved in the same

way, but more rarely : we have only to ascertain what number or quan-

tity will satisfy the equation ; then, by dividing out the binomial factor

corresponding to this value, we will have a now equation of a degree

lower by unity. A second value may be found frdm this equation, and

the factor corresponding to it divided out. Thus, we may continue tho

process until the given equation is reduced to one of the second degree,

which can be solved by known rules.

EXAMPLES.

1. Solve the equation, x^— Gx-^ + 11^— 6 = 0.

We see that a: = 1 will satisfy this equation. Hence, x— 1 is a

divisor. Dividing by x— 1, we get a quotient, x^— 5x -f 6 = 0, by

solving which we get a;= 2 and 3. Hence, the three values are 1,

2, and 3.

2. Solve the equation, x*— bx^ -f 4 = 0.

We find +1 to be a value, and, dividing by a;— 1, we get a new

equation, x^ -f x^ — 4x — 4 =, which is satisfied for x = — 1.

Dividing by a; + 1, we get a new equation, x^— 4 = 0, which gives

37*
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the two values, x= -\- 2, and — 2. The four values are then, + 1,

— 1, H- 2, and — 2.

3. Solve the equation, x^ + Sx*— 5x' + 4cc + 12— ISa;^ = 0.

Ans. + 1, — 1, + 2, — 2, and — 3.

4. Solve the equation, x*— a^x^— l^x^ + a^h'^ = 0.

A71S. + a, — a, -f 5, — h.

5. Solve the equation, of— a^x'^— I'^x^ + a^x^ + I'^x^— x'^+ a^¥x—
aW = 0. Ans. + a, — a, + b, — b, and + 1.

6. Solve the equation, sc^ + x^— 4x— 4 = 0.

Ans. + 2, —2, —1.

Third Property.

449. Every equation, with one unknown quantity, has as many

values for this unknown quantity as is denoted by the degree of the

equation, and has no more.

Let us assume the equation, a:;" + Pa;"""' + Qx""^ + . . . Ta; + U
= 0, which is of the m*'' degree. It is to be shown that it has m
values and no more. We will also assume that every equation has at

least one value. Let a be one value, then x— a is a divisor. Let
jpm-i

_j_
p'-^m-z

_f. Q'a;"-' + T'ic + U', represent the quotient of

the division of the first member by cc— a. Then the given equation

will assume the form, {x — a) (x"-' + P'x"""^ -f Q'x"""^ + &c.) =
. (A), in which, the coefficients, P', Q', are different from the

original coefficients, P, Q, &c. Now, since, in equation (A), we have the

product of two factors equal to zero, we have a right to place either

equal to zero, let us place a;-""' + Fx"-^' + Q'cc"-^ + &c. = (B).

Equation (B) will also have one value ; suppose it negative and equal to

— h. Then, by the first property, x— (— Z)) = x ^- & will be a

divisor. The first member of (B) can then be decomposled into two

factors, one of which will be a; + &, and the other the quotient arising

from the division of the first member by a;+ &• Hence, (B) becomes

(a; + h) (a;'"-^ + F'a;'"-^ + g'tt""-" + &c.) = (C). And (A) can be

put under the form of {x— a) (x + I) (x'"-^ + T"x^-^ + Q"x"'-^ +
&c) =0. It is plain that, by putting the second factor of (C) equal to

zero, we will get another value, and, consequently, another divisor. By



GENERAL THEORY OF EQUATIONS. 439

continuing this process, the degree of a; in the successive quotients will

be diminished by unity each time, and, after m— 1 divisions, we will

obtain a quotient of the first degree in x, from which, of course, one

value of X will be found. "We supposed the first value positive, and

the second negative, let us attribute the double sign, ± , to the remain-

ing values, c, d, e, &c., since they may be either positive or negative.

The first member of the given equation can then be decomposed into m
binomial factors of the first degree in x, and we will have, a;" + Px"-'

+ Qx'"-' + +Tx + V= (X— a) (x + b) (xzpc-) (x^zd)
&c. = 0.

But, since each factor corresponds to a value, and since there are m
divisors, or factors, there must be ?n. values.

Scholium.

1st. Had we known that the first member of an equation of the wi*""

degree could be decomposed into m binomial factors of the first degree

with respect to x, we could readily have shown that the equation must

contain ??i values. For, it can be satisfied in m ways, by placing each

of its 7)1 factors equal to zero, and each factor, so placed, will give a

value. Moreover, since the equation can be satisfied only in m ways,

it contains no more than m values.

2d, It does not follow that all the values must be difi"erent. Any
number of them, even all of them, may be equal. Thus, the equation,

a?— 2a; + 1 = 0, contains two values, each equal to + 1. The equa-

tion, (x— a)"" = 0, contains m values, each equal to -j- a The equa-

tion, (x— a)'°(x-{-by=0, contains m values, each equal to + a, and n

values, each equal to — b. And so for other equations.

3d. An equation of the third degree, such as (x— a) (x— b) (x— c)

= 0, will contain three divisors of the first degree, {x— a), (x— b),

and (a;— c) ; three of the second degree, (a;— a) (x— &), (x— a)

(x— c), and (x— h) (x— c) ; and one of the third, (x— a) (x— b)

(x— c). These divisors are evidently equal to the number of combi-

nations which can be formed by combining 3 letters in sets of 1 and 1,

2 and 2, 3 and 3. So, likewise, if we take the m factors of an equation

and multiply them two and two, three and three, &c., we shall evidently

obtain as many divisors of the second degree as we can form combina-

tions of VI letters, taken two and two ; and as many divisors of the third

degree as there are combinations of ??i letters taken three and three.
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&c. The given equation will then have m divisors of the first degree,

m(m— 1) m(m — 1) (m — 2)
in X, —

—

-— divisors oi the second degree, —^=
^

—

^-^

of the third degree, &c.

Fourth Property.

451. All the coefficients, after the first, of an equation of the m*''

degree, are functions of the values.

Suppose the general equation of the ?n*'' degree, a;" + Pa:;"'-' -f

Qaj"'-^ + .,..+ Tec + U = 0, contains the m values, ± a, d= 6, ± c,

± c7, &c. The equation can then be put under the form of (x rp a)

(x =F 6) (x =F c) (x =fi d), &c., to m factors = 0. By actually per-

forming the indicated multiplication, we will get.

=Fa
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Thus, let tte values be + a, + h, and — c.

Then, (x— a) (x— h) (x4-c)=0, orx^— a \x^-\-a'b

— 5 — ac

+ c\ — he

X + ahc = 0.

And we see that coefficients are formed in accordance with the above

452. The preceding properties show several important things in

relation to the composition of an equation.

1. If the coefficient of the second term of an equation be zero, and,

consequently, the second term be wanting, the sum of the positive

values must be equal to the sum of the negative values.

2. If the signs of the terms of an equation be all positive, the values

must be all negative. For, an equation cannot have all its terms posi-

tive unless its binomial factors are of the form, (x + a) (x + h) {x + c),

&c. ; which factors, placed equal to zero, will give the negative values,

— a, — h, — c, &c.

3. If the signs of the terms of an equation be alternately + and —

,

the values of the unknown quantity will be all positive. For, in this

case, the first member of the equation must be made up of the factors,

(x— a) (x— U) (x— c), &c., corresponding to positive values.

4. Since the last term, irrespective of its sign, is the continued pro-

duct of the values, it follows that, when the last term is zero, one value,

at least, must be zero.

5. It follows, also, from the composition of the last term, that, in

seeking for a value, we need only seek among the divisors of the last

term, since every value must be a divisor of that term.

6. If we know one value, the coefficient of the second term will give

the sum of all the rest, and the last term, divided by this value, with or

without its sign changed, will give the product of all the rest.

Corollary.

453. 1st. The last two consequences enable us to solve equations

with facility when all the values except two are known.

Take, as an example, the equation, x^— Ix'^— |x + | = 0.

The values must be sought among the divisors of the last term

:

+ 1 is a divisor of the last term, and may, therefore, be a value ; upon
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trial, we find that it will satisfy the equation, and is, therefore, a value.

Calling the other two values x and y, we will have, — (1 -\- x -}- 1/) =
—

I,
the coefficient of the second term. Hence, x + y = — ^. We

xy
have, also (sixth consequence),

-f
= —

i- Combining these two

equations, we get x (
— i — a;) = — ^, or cc^ + |x = + |. And

the values of x and ^ are found to be + ^, and — 1. The equation

has, of course, but three values, since it is an equation of the third

degree, (Art. 450).

2d. When all the values are known except two, we can tell whether

these values are real or imaginary without actually finding them.

Thus, take the equation, x*— 6x^— IQx + 21 = 0.

The exact divisors of the last term are +1, +3, and +7, — 1,

— 3, and — 7 ; the values must be sought among these numbers.

We find, upon trial, that + 1 and + 3 are values. The second term

of the equation being wanting, the sum of the other two values must

21
be — 4, and their product

:j

—- = 7. But 4 is the greatest product

which can be given by two numbers whose sum is 4. Hence, the

other two values of the equation are imaginary. And, in fact, by pur-

suing the preceding process, we find them to be — 2 -\-y/— 3, and

_ 2—^ITS-

EXAMPLES.

1. Solve the equation, x^— 2ax^— da'x + ISa^ = 0.

Ans. 4- 2a -f 3a, and — 3a.

2. Solve the equation, x"— 4x^ + x — 4 = 0.

Ans. + 4, + v/— 1, and —^— 1.

3. Solve the equation, x*— 2x'— S = 0.

Ans. + 2, — 2, + ^/=^, —^':^^.

454. 3d. If the values are known, the equations which give those

values can be formed in two ways, either by multiplying together the

binomial factors corresponding to those values (Art. 450), or by form-

ing the coefficients, (Art. 451).
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EXAMPLES.

1. Form tte equation whose values are + 1, — 1 and— 2.

Ans. x'' + 2x^— x— 2 = 0.

For the factors, multiplied together, and placed equal to zero, give

(x— 1) (x + 1) (a; + 2) = (A) ov x'' + 2x''— x— 2 =^ 0.

We see that the three factors of (A), placed separately equal to zero,

will give the values, + 1, — 1, and — 2, or the problem may be solved

by Art. 450.

Coefficient of 2d term = — (+1 — 1 — 2)= + 2

3d term = (+1) (-l)+(+l) (-2)+(-l) (-2)=-l
« 4thterm=— (4- 1) (— 1) (— 2) =— 2.

2. Form, by both methods, the equation whose values are + 4,

+ ^^^, and — v/— 1. Tins. ar'— 4x^+x— 4 = 0.

3. Form, by both methods, the equations whose values are + 2,— 2,

+ ^^-2, — ^^^. Ans. x*— 2x^— S = 0.

4. Form, by both methods, the equation whose values are— 1, — 2,

— 3, and — 4. Ans. x* + lOx'' + 35x2 + 50x + 24= 0.

Fifth Property.

455. Every equation may be transformed into another, in which the

values of the unknown quantity shall be equal to those of the proposed

equation, increased or diminished by a certain quantity.

Let the given equation be

' x" + Px»-' + Qx"' + + Tx + U = 0,

and let it be proposed to transform it into another in y, so that y =
x± a. The principle of transformation is, of course, the same when

y = x + o, or = x— a ; we will then confine our discussion to the

case, when y = x— a. From this equation there results, x — y + <^-

Substituting this value in the proposed equation, it becomes {jy + a)"*

+ P (^ + a)-' + Q(y + ay-^ + T (// + a) + U= 0.

Developing the different powers of y + a by the binomial fonnula, and

arranging the development according to the descending powers of y, we

have the transformed equation,
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2. Transform the equation, x^— Zx^ = — 2, into another, in •which

the second term shall be wanting. Ans. y^— 3y = 0.

The transformed equation can be readily solved, one value of y being

zero. Hence, one value of the given equation is 1. The transformed

equation, in this case and in many others, is simpler than the given

equation, and, therefore, more readily solved. The chief object of the

transformation is to simplify the form of the equation.

Scholium.

457. 1. The third term of the transformed equation may be made to

disappear by giving to a such a value as will satisfy the equation,

—~ ~— + (m— 1) Pa + Q = 0. And, since this equation

is of the second degree in a, there are two values for a, and, con-

sequently, the third term can be made to disappear in two ways. In

like manner, the fourth term can be made to disappear in three ways,

the fifth term in four ways, &c. j and the last, or {in + l)**" term, in m
ways. By recurrence to the derivations of these coefficients from the

values, we see that the above results are true. The last term, for in-

stance, being made up of the product of the m values, can be made to

disappear by placing either of the m values equal to zero.

458. 2. It may happen that the value of a, which makes the second

term disappear, will also cause the disappearance of the third or some

other term at the same time. Let us examine under what circumstan-

ces the second and third terms will disappear together. By placing the

coefficient of the second term, Pa + m, equal to zero, we get a =
, and, by placing that of the third term, ^ —^;~— -f (m— 1)

P^ /P 2QP /P^
Pa + Q, also equal to zero, we get « ^ d= \ / —m \ m m(vi— 1)

Now, it is plain that the values of a in this equation will be identical

P
with the last, that is, both , when the radical disappears. Placing

2mQ
the radical equal to zero, we get P^ ^ — -. "Whenever, then, them— 1

square of the coefficient of the second term is equal to twice the quo-

tient arising from dividing the product of the desree of the equation

38
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into tte coefficient of the third term by the degree of the equation,

less one, the second and third terms will disappear together.

The same truth may be demonstrated more elegantly by the principle

of the greatest common divisor.

Dividing the coefficient of the third term by that of the second, we

get, after two divisions, a remainder, mQ + ^^

^
• And, it is evi-

dent that, when this remainder is placed equal to zero, we will have

made manifest the circumstances under which there will be a common

factor between the two coefficients. Placing the remainder equal to

zero, we get P'^ = zr, as before

EXAMPLES.

1. Make the second and third terms disappear from the equation,

x^— Bx^ + Sx— 28 = 0, and find one value of x.

Ans. Transformed equation, ^^— 27 = 0, and a; = 4.

2. Find two values in the equation, x* -f 4a;' -f 6x^ -\-4x— 15 = 0.

Ans. Transformed equation, i/*— 16 = 0, then, y = ± 2, and x =
+ 1, or— 3.

Sixth Property.

459. Every equation having the coefficient of the first term plus

unity, and the other coefficients entire, will have entire numbers only

for its rational values.

Let the proposed equation be

^m + p^m-1 _|_ Qa.m-2 + Tx + U = 0.

In which, P, Q, &c., are whole numbers.

If X can have a fractional value in this equation, let this value, re-

duced to its lowest terms, be — . Substituting this value for x in the

given equation, it becomes

Multiplying by h^~\ and transposing, we get

^ = — Pa"-' — Qa^-^i — TaS^-^— U6"-».
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But tlie second member is an entire quantity, since all its terms are

entire. Hence, the first member must be entire. But, since a, by

hypothesis, is prime with respect to &, a" must also be prime with re-

spect to b. The supposition of the proposed equation containing a ra-

tional fractional value, has then resulted in the absurdity of making an

entire quantity equal to an irreducible fraction. "We conclude, there-

fore, that this supposition is wrong, and that the rational values are all

entire. The demonstration is restricted to rational values, because the

assumed value, -^, is rational in its form.

CoroEari/.

460. Articles 452, 456 and 459, are used in solving numerical and

literal equations by changing their forms.

Let the proposed equation be y*— -ii/^— 8?/ + 32 = 0. "We know

that all the rational values are entire (Art. 459), and that they must be

found among the divisors of the last term (Art. 452). But as there

are so many divisors of the last term, it will be more convenient to

employ (Art. 456) to transform the equation into another, whose last

term admits of fewer divisors. Make re =y— (—j-\ = i/-\-l. The

transformed equation in x, is x* — 6.7=^ — IGx + 21 := 0, and the

divisors of the last term, are -}- 1, + 3, + 7, + 21, and — 1, — 3,

— 7, — 21. On trial of these divisors, wc find that -f 1 and + 3,

will satisfy the transformed equation, and, consequently, are values.

Hence, cc = 2/ + 1 = 2 and 4, in the given equation. Dividing the

first member of the given equation by (x— 2) (Art. 449), it will be

reduced to a cubic equation, and again dividing by (x— 4), it will be

reduced to a quadratic, which can be solved.

Seventh Projierii/.

461. Imaginary values enter equations hi/ pairs.

We are to show that if a-\-hy/— 1 is a value in the equation, x" -f

Pa;"-' + Qx'"-^ + Tx + U = 0, a — h^'^^ will also be a

value.

The truth of the proposition is an evident consequence of Art. 451,

for U, the last term, is the product of all the values, and it has been

assumed real. But it can only be real, when the imaginary values (if



448 GENERAL THEORY OF EQUATIONS,

any), enter by pairs, and of such a form as to give a real product when
multiplied together. Thus, if we have two imaginary values, m +
v/— n and ^— 4, we must also have two other values, m—^— n
and —v/— 4, otherwise, U will not be real. Or, we may demonstrate

the property otherwise, thus : by substituting the assumed value,

a + h^— 1, in the given equation, we will have, (a -f l-y— 1)" + P
(a + i^/— I)"-' + T (a + hs/^^) + U = 0. When
these terms are expanded, the odd powers of tv'— 1 will be imaginary,

and the even, real. Representing by A all the real terms involving a

or h, and by B^-^ 1 aU the imaginary terms, we will have A +
Bv'— 1 = 0. Now, since a + h^— 1 is, by hypothesis, a value, the

last equation must be satisfied, but this can only be so when A = 0, and

Bv/— 1 = 0, since imaginary terms cannot be cancelled by real ones.

If «— h^— 1 be substituted in the equation, the expanded results

will be precisely the same, except that the odd powers of hy/— 1 will

be negative. Hence, we will have A— Bv^— 1 = 0. But in order

that a -f h^— 1 should be a value, we have seen that A = and

B = 0. Hence, the equation, A— Bv'— 1 =; 0, is satisfied, and that

being so, a— h-y— 1 must be a value.

The absurdity of the hypothesis of a single imaginary value may be

illustrated by an example.

Let us assume that the three values of an equation of the third

degree are + a, +1, and + v/— 1. The equation must then be

(x— a)Xx— 1) (x—vA=n:) = 0, or (x— a) (x"— (1 —v/=l)
35+ >/— 1) = 0. Hence, a?— a = 0, andcc''— (l+ \/

—

V)x-\-y/—

1

= 0. The second equation, when solved, will give x = ~

\/-^..-r+ i.2^-i-i,L±v^i^^/. !^/-l

2

And we see that we do not get back again the two values, + 1, and

+V-1.

Remarks.

462. 1. The product of imaginary values is always positive, and,

therefore, the absolute term of an equation, whose values are all imao-i-

nary, must be positive.

2. If the second term of an equation containing only imao-inary

values, is wanting, these values will all be of the form, ±v'—^•

3. Every equation of an odd degree has at least one .real value forr,
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and the sign of this value will be contrary to that of the last term of

the equation.

4. Every equation of an even degree, whose last term is negative,

has at least two real values for x ; one positive, and one negative.

EXAMPLES.

1. One value of cc is 4 + ^— 10, what must a second value be?

Anz. 4—^=IOr

2. Two of the values of an equation of the fourth degree are + a,

and — hj and the last term is — m. How are the remaining values ?

Ans. Real.

Eighth Property.

463. If the real values of an equation, taken in the order of their

magnitudes, be n, h, c, d and e ; a being ^6, h'^ c, &c. ; then, if a

series of quantities, a', h', c', d', &c. ; a' taken greater than a, V be-

tween a and h, c' between h and c ; be substituted for x in the pro-

posed equation, the results will be alternately positive and negative.

For, since a, &, c, d, &c., are assumed to be values, the proposed

equation can be put under the form of (x— a) (x— h) (x— c) (x— d)

&c. = 0.

Substituting, for x, the proposed series of quantities, a', h', d, d', &c.,

we get the following results.

(of— a) (a'— b) (a'— c) (a'— d) &c, = -{- result, since all the

factors are positive.

(6'— a) (b'— I) (V— r) (U— d) kc, = — result, since first factor

only is negative.

(c'— a) (d— h) (d— c) (c'— d) &,c., = + result, since first two

factors only are negative.

(df— a) ((Z'— 5) (d'— c) (d'— d) &c., = — result, since first

three factors only are negative

Remarks.

1. We see that, between the quantities, a' and h', which give the first

plus result and the first minus result, there is one value, a. And be-

tween the quantities, a' and d', which give the first plus result and the

second minus result, there are three values, a, h and c. And, as the

38* 2d
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same is evidently true for any number of odd values, we conclude that,

if two quantities be successively substituted for x in an equation, and

give results, with different signs, between these quantities, there will

be one, three, five, or some odd numbers of real value.

2. If any quantity, m, and every quantity greater than m, give re-

sults all positive, then m is greater than the greatest value of x in the

equation.

3. If the results obtained by substituting two quantities have the

same sign, then, between these quantities there are two, four, six, or

some even number of values, or no value at all. Thus, between a' and

c', which give + results, there are two values, a and h.

Scliolium.

464. The preceding property may be demonstrated differently, by

employing a principle of frequent application in all branches of mathe-

matics, viz., that a quantity changes its sign in passing through zero

and infinity. Let the quantity be x = a ; suppose x^ a, the expres-

sion is positive ; it is zero when x = a, and negative when x<^a.
Hence, the quantity x— «, changes its sign in passing through zero.

+ M
Again, take , This quantity is positive when x'^a ; it is in-

finite when X = a ; and negative when x <^a. Now, in the results

of Art. 463, between the first + result and the first — result, the first

member of the proposed equation must have passed through zero, and

consequently through a value. In like manner, between the first

— result, and the second + result, the first member must again have

passed through zero, and consequently through a second value. Then

two values must have been passed through between the first two + re-

sults, &c. By continuing the same course of reasoning, we might

readily show that three values must be passed through between the first

positive and second negative result; five values between the first posi-

tive and third negative result; two values between the first two negative

results; four between the first and third negative results, &c., &c.,

Limit of the Values. — Ninth Property.

465. If we substitute for the unknown quantity the greatest coeffi-

cient plus unity, the first term of the equation will be greater than the

sum of all the other terms, provided we always affect the greatest co-

efficient with the positive sign.
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Let us resume the equation,

x^ + Prr-"-' + Qx"-^ + Ta; + U = 0.

It is plain that the most unfavourable case will be when all the co-

efficients have the same sign, -f or — . We will assume all the coeffi-

cients after the first to be negative ; the given equation will then be of

the form, x'^— Tx^-' — Px"-^— ¥x'^-^— P:c»-^ — P = 0,

or a;"_ P(a;"-'— x""''— x"'"^ — 1) = 0.

Disregarding the sign of P for a moment, we wish to ascertain what

value X must have, in order that cc" ^ P(x°~' -f- cc"^^ + a;"~* . . . -f x

+ 1). Inverting the order of the terms within the parenthesis, we

will have a geometrical progression, whereof, 1 is the first term, x°^'

the last term, and x the ratio of the progression. The formula, S' =
— , will then give the value of the quantity within the parenthesis, ^

a;"— 1 _ , ^ ^ /:,•»—

K

^ Px" P(7-m |v rX
^_^. ....... ,..^..... ^.^^_^^,... ^x— 1 x— r

Px"
This inequality will evidently be true, when x" = -. Dividing

both members of this equation by a;", and clearing of fractions, we find

a; = P + 1, as enunciated.

It is to be observed that, in this demonstration, we assume a; ^ 1.

EXAMPLES,

1. What number substituted for x in the equation, x^— 7x* -f Gx'^ -f

6x^ -f X = 0, will make the first term greater than the sum of all the

other terms ? A71S. 8.

2. What in the equation, x*— lOa;^ + 12x + 13 = ?

Ans. 14.

3. What quantity in the equation, x^— 2aa;^ -f- 6ax— 12a = 0.

Ans. 1 4- 12a.

JScJiolium.

In seeking for the positive values of an equation, we need not go

beyond the greatest coefficient with a positive sign prefixed to it, plus

unity. Thus, in example first, there is no positive value greater than

8, because 8, and all numbers greater than 8, will continually make the

first member positive (Art. 463).
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Second Limit. — Tenth Property.

466. If we substitute for x in the equation, x" + Pa:"-' + Qx"-^

. . . , Ta; + U = 0, unity, increased by that root of the greatest nega-

tive coefficient which is indicated by the number of terms preceding

the first negative term, we will have a superior limit of the positive

values.

Suppose Nx"""" to be the first negative term, and suppose W to be

the greatest negative coefficient. The most unfavourable case obviously

is that in which we suppose all the coefficients after N, negative, and

equal to W. It is plain, moreover, that any value of x which makes

a."^ W(x'"-° + x"-"-' + «+!), will, of course, make the

first member of the given equation positive. We are to find the value

which fulfils this condition.

Resuming the inequality, x" ^ W(a;"-° + a"-"-' + ic""-""^ ....

^ TTT
/*"-"+' — 1\ ^ W£c"-'+'

-j- X + 1), we have, also, x" > W ( z— ), or x" > -—
' "^ \ X— 1/ -^x— 1

W .... 'Wx'"~°+'
-. And this inequality will be true, when x" =

1

W
From which, x— 1 = —^^ , or (x— l)x"~' = W. Now, if (x— 1)

(x— 1)°-' = W, then {x— l)x"-' will be greater than W. If, how-

ever, we place it equal to W, we will have (a;— 1) (x— 1)"-' = W,
or (x— 1)° = W. Hence, x = 1 + y W, which agrees vsdth the

enunciation.

It will be seen that in two respects we have taken an unfavorable

case. The second limit t en may considerably exceed the greatest

positive value, but it is smaller than the first limit, and, therefore, the

most used in practice.

EXAMPLES.

1. Required superior positive limit of the values in the equation,

x« -f 2x*— Sx" + 7x=^— 17x -F 5 = 0. Am. 1 -^JW.

2. Required superior positive limit of the values in the equation,

a;< + 4x» -J- 12x2— 5x— 16 = 0. Am. 1 + yle:
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Eleventh Property.

467. The equation, x"" + Pa;'"-'+ Qa;'"-^ + + Ta; + U = 0,

can be transformed into another in y, or some other variable, such, that

the values of the new unknown quantity shall be some multiple of

those of the old unknown quantity.

For, let y= nx, then x = —. Substituting for x, wherever it occurs

'in the given equation, its value in terras of y, we have -- + P ^^ri +

Q^V....T^^+ U = 0, or y- + 7iFy-i + n'Qy-'

w^-'Ty + n"!! = 0. And we sec that the transformation is effected

by changing x into y, multiplying the coefficient of the second term by

the multiple n, that of the third term by n^, &c. For instance, let it

be required to transform the equation, x* + 2x' + 4x^ + 8ar -f- 1 = 0,

into another, in which the values of the new unknown quantity shall

be twice as great as those of the old. Then y ^ 2x, and we have y*

+ 4/+16/+64y + 16= 0.

RemarJcs.

The principal use of this transformation is in clearing an equation

of fractional coefficients, and at the same time making the new equa-

tion preserve the proposed form ; that is, the coefficient of the first term

Pa;""'
is still to be plus unity. Let us take the equation, as™ -\ 1-

Qx"-' . Kx"-' Tx U ^ . , .
,— H ^ 0, in which we assume mn to be

n mn n n

the least common multiple of the denominators. Then y = mnx.

The transformed equation will then be ^-^^—I h^——;-! ~ 5

T» m-3 Tl TT

m^b^Ry'"-^ .... m"-'w"'-'^Ty + m^Ti^-'U = 0. And we see that the

transformation is effected by changing x into y, and multiplying the

second term by the first power of the least common multiple, the third

term by the second power of that multiple, &c. Thus, the transformed

equation of x^ + |- — | + 1 = 0, is y' + 4/— 36y + 1728 = 0.
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468. The two rules just given are, of course, only applicable when

the coefficient of the highest power of x is plus unity. When that is

not the case, we may either first make this coefficient plus unity, and

apply one of the preceding rules, or we may at once make y = nx, n

in this case representing the product of the least common multiple of

the denominators by the coefficient of the highest power of x.

EXAMPLES.

1. Transform the equation, x^— 4x' + 2x -f 2 = 0, into another,

in which the values shall be twice as great as in the given equation.

Ans. y— Stf + 8y + 16 = 0.

2. Transform the equation, x*— ox'^ + 2a;^ + a? + 1 = 0, into an-

other, whose values are treble those of x.

A71S. /— 9if -f 18/ + 27y + 81 = 0.

3. Transform the equation, x'^— "9- + -vr + k + 1 = 0, into an

other, containing only entire coefficients.

Ans. y— 15/ + 300/ + 5400?/ + 810000 = 0.

4. Transform the equation, 2x^— "5"+ p + 1 = 0, into another,
o O

whose coefficients shall all be entire.

Ans. 2/— 2/ 4- Gy 4- 216 = 0.

5. Transform the equation, 2x^—
"o" + F "^ 1 = 0, into another,
o o

whose coefficients shall all be entire, and the coefficient of the first

term, plus unity. Ans. /— 2/ + 12y + 864 = 0.

In this, make y = 12a:;.

469. When the coefficient of the first term is some whole number

different from unity, and the other coefficients are entire, make n, in

the equation y = nx, equal to the coefficient of the first term. Thus, to

transform the equation, Qx^— 19^;^+ 19x— 6 = 0, make y = Qx,

the transformed equation will be /— 19/ + 114y— 216 = 0.

Twelfth Properti/. — Process of Divisors.

470, In every equation in which the coefficient of the first term is

unity, and all the other coefficients are entire, a value will divide the

last term, the sum arising from adding the quotient so obtained to the
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coefficient of the second term from the right, the sum arising from

adding this second quotient to the coefficient of the third term from the

right, and will thus continue to be an exact divisor of all the successive

sums so formed, until the coefficient of the second term from the left

has been added to the previous quotient, when the last quotient will be

minus unity.

Let us resume the equation,

x^ + Px"-' + Qx"'-^ + Ta; + U = 0,

in which all the coefficients are entire. Suppose a to be a value, the

equation will then become, after transposition and division by «, a"~'

+ Pa""-^ + Qa°~^ T = . Now, since the first member is

made up of entire terms, the second member must be entire also.

Hence, U is divisible by a, as it ought to be, since U is the product of

all the values. Transposing T to the second member, we have a"—' +

P(j°'-2 ^ Qa'o-s + &c. = — T = U'; U' representing the alge-

braic sum of T and —

.

a

Dividing both members again by a, we get the equation, a""" +

Pa"-' + Qa"-^ + &c. = .

a

The first member being entire, the second member must be entire

also. Hence, the second condition to be fulfilled by a value is, that it

must be an exact divisor of the sum formed by adding the quotient of

the last term by the value to the coefficient of the first power of x.

This was also to have been anticipated, because the coefficient of the

first power of x is made up of the values, taken m— 1 and m -^ 1

;

one of these combinations will not contain the value a, and will have a

sign contrary to the first quotient, and will be cancelled by it. The re-

maining terms making up this coefficient all contain a, hence, a will be

a divisor. By transposing the terms in succession, and continuing the

. . . P'
division, we will find, after m transpositions and divisions, — = — 1

;

P' representing the sum of the coefficients of x""-' added to the pre-

ceding quotient.

Hence, the last condition to be fulfilled by a value is, that it must be

an exact divisor of the sum formed by adding the coefficient of x"-' to

the preceding quotient.
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We, therefore, have the following rule for finding the rational values

of an equation.

RULE.

I. Transform the equation, if necessary, into another, in lohich all

the coefjicients shall he entire; that of the first term heing plus unity.

All the rational values will then he entire (Art. 459).

II. Find the superior positive and superior negative limits of the

values.

III. Write down in succession, in the same horizontal line, all the

entire divisors of the last term hetween zero and these limits.

IV. Divide the last term hy each of these divisors, and write the re-

spective quotients hcneath the corresjyonding divisors.

V. Add the coefiicient of the first power of x to each of these quo-

tients, and tvrite each sum thus formed heneath the corresponding

quotient.

VI. Divide these sums hy the corresponding divisors in the column

of divisors, and write the new quotients under the corresponding sums,

rejecting those divisors lohich give fractional quotients, and crossing out

the vertical column in which they occur.

VII. Proceed in this way until the coefficient of x""' has heen added,

to the preceding quotient, then those divisors that give minus unity for

quotients, are values, and they are the only rational values.

EXAMPLES.

a;3_ 2a;2— 5x + 6 = 0.

The superior positive limit is 1 +^5 = 6.

The superior negative limit is found by changing + x into— x; the

superior positive limit of the transformed equation will then be the

superior negative limit of the given equation.

Changing + x into — x, we get — x^— 2x^ -f- 5a; + 6 = 0. But

the coefficient of the first term must always be plus unity, hence, by

multiplying the equation by minus unity we have, x^ + 2x^— bx—
6 = 0. _
Then — (1 + v'e) = superior negative limit. Assume — 4 to be

this limit, the square root of 6 being between 2 and 3, we take 3 to be

the root, since it is better to have the hmit too great than too small.

Hence, we have these divisors below the limits, +1, + 2, + 3 ; — 1,

-2,-3.
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Divisors, + a, -\- b, -{- c.

Quotients, — he, — oc, — ah.

Sums, ah -j- ac, ah + he, ac + he.

Quotients, h -^ e, a -{- c, a -\- b.

Sums, — a, — h, — c.

Quotients, — 1, — 1, — 1.

Hence, the three values are -\- a, + h, -\- c.

We will take, as a second example in literal equations,

a;3 4- (a— 6 -f 2')x^ + {2(a— h') — ah)x— 2al = 0.

Positive.

Divisors, + o, + &, + 2,

Quotients, — 2h, — 2a, — ah,

Sums, (2a—ha—4&),— h(a+ 2),

2(a — h — ah),

Quotients, X,

—

(a-\-2,)(a—h—ah},

Sums, X,—h, 2(a+l)—h(a.+ l),

Quotients, X ,
— 1, x.

Negative.

- «,— ^,— 2,

+ 2h, + 2a, + ah,

a(2— &),4a— &(2+ a),2(a— S),

+ (h-2),X,
+ a, X

, + 2,

— 1, X,— 1.

(a -6),

Hence, the three values are + h, — a and — 2.

The process of divisors being of such high practical importance, we

will give another example, in which one of the sums is zero.

Take the equation,

x''— x" —ix + 4 = 0.

Superior positive limit, = 5 ; superior negative limit, = — 3.

Tositive.

Divisors, + 1, + 2, +4,
Quotients, + 4, -f 2, + 1,

Sums, 0, — 2, — 3,

Quotients, 0, — 1, X

,

Sums, — 1, — 2, X,

Quotients, — 1, — 1, X
,

Negative.

-1,-2,
-4,-2,
-8,-6,
+ 8, + 3,

+ 7, + 2,

-7,-1.

Hence, the three values are + 1, + 2, and — 2.

472. The process of divisors enables us to find all the rational values

of any equation. We have only to make all the coefl&cients entire, if

not already so, that of the highest power of x being made plus unity.

All the rational values of y in the transformed equation will be entire

;

find these values, and then those of x will be known from the relation

between x and y.

Take 6x'— Idx^ + 19x— G = 0. Making ^ = Qx, we have the
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transformed equation in y, ^ — 19j/^ + 114y— 216 = 0. By pi*o-

ceeding as before, we find the three values of y to be + 9, + 6, and

+ 4. Hence, the corresponding values of a; are | + 1 and + |.

473. In this, and in many examples, the last term has a great num-

ber of exact divisors, and the process is therefore tedious. It is often

convenient to transform an equation, whose last term is too large, into

another whose values shall be greater or smaller by a constant quantity.

Making y = z + 2, in the preceding equation, the transformed equa-

tion in z '\^ ^— 132r^ + 50z— 56 = ; and the three values of z

are 7, 4, and 2. Hence, those of y are 9, 6, and 4, and those of x,

-f |, -}- 1, and -f I, as before.

474. If we solve the equation, x^— 2x''— 3a;^ -f 8x— 4 = 0, by

the process of divisors, we will get the three values, -f 2, — 2, and

— 1. And, by dividing the first member of the equation by the factors

corresponding to these values, we will have left, x -f- 1 = 0. Hence,

the value — 1 enters twice in the given equation. We see, from this

example, that while the process of divisors gives the rational values, it

does not show whether any or all of them are repeated once or more.

This remark is evidently applicable to all equations whatever. Some

test is then necessary, by which we can ascertain the equal values.

EQUAL VALUES.

475. Let the equation be

(x— a)" {x— hy {x— cj (x—d) {x— e) &c. = (A),

in which there are m values equal to a, to values equal to h, j^ values

equal to c, and all the other values unequal. Calling D the differential

coefficient of this equation, we will have (Art. 366),

D = m (x — a)"-' (x — bf (x — c)p (x — d) (x — e) &c. +
n (x— 6)"-' (x— a)" (x— cf (x— d) (x— e) &c. -\-p{x— c)p-'

(x— a)" (x— 6)„ (x— c?)(x— c)&c. + (x— a)"'(x— J)"(x— c)P

(x— e) &c. -f (x— a)" (x— 5)° (x— c)p (x— d) &c., plus other

terms (B).

It is plain that the greatest common divisor, D', between (A) and

(B), will be

D' = (x— a)"-' (x— &)"-' (x— c)P-'.

We see that this divisor contains (m— 1) values equal to «, (n — 1)

values equal to h, and (p— 1) values equal to c. Hence, it is plain

that the number of equal values in each set of the greatest common
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divisor is one less than in the giv equation. Therefore, to ascertain

whether there are equal values, we have this

RULE.

Find the differential coefficient of the first memher of the given equa-

tion [or, as it is generally called, the first derived polynomial), next get

the greatest common divisor hetiveen the first member of the pro^wsed

equation and this differential coefficient, place this common divisor eqtial

to zero, and find its values. Each independent value so found loill he

repeated once oftener in the given equation than in the greatest common

divisor ; if the latter, for instance, contain two values equal to a, and

four values equal to b, the former loill contain three values equal to a,

and five equal to b. If the greatest common divisor he of too high a

degree to solve, we may find the second differential coefficient, or second

derived polynomial of the given equation, then the greatest common

divisor between this polynomial and the first memher of the given equa-

tion. Each independent value of this common divisor will he re-

peated tioice oftener in the given equation.

EXAMPLES,

1. Does the equation, x*— 2x^ + ^x^— x-\-h = 0, contain equal

values ?

First derived polynomial, 4x'— 6a:^ + 3a;— 1.

Greatest common- divisor, x— 1, which, placed equal to zero, gives

cc = l. Hence, th|| given equation contains two values equal to 1.

If we divide that equatipn by (x— Vf, we will have left
, x^ + l = Q.

Hence, the other two values are + v/— I, and —s/— J-

2. Does the equation, x^— x^— 14a;''— 2Qx^— 19a?— 5 = 0, con-

tain equal values ?

First derived polynomial, 5x^— Ax^— 420;^— 52x— 19.

Greatest common divisor, (x + 1)'. Hence, the given equation eon-

tains four values equal to— 1, and, by dividing the equation by (x -f- 1)^,

we find the other value to be + 5.

3. Required the equal values in the equation, x*— 2x^ -f1 = 0.

Ans. Two values = + 1 and two values =— 1.
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a;"

4. Required all the values of the equation, x^— —— 2x^ + a;^ + x

— J = 0. Ans. + 1, + 1, + J, — 1 and — 1.

5. Required all the values of the equation, x* \- x^ — 6x^ — 4x

4-8 = 0. Ans. + 1, + 2, — 2, — 2.

After dividing out the equal factors, (x + 2) (x + 2), we had a

quadratic left, which was solved by known rules.

6. Find the values of the equation, x^— .r"— 2x^ + 2x^ + x— 1

= 0. J[ns. + 1, + 1, + 1, — 1, and— 1.

The first greatest common divisor is x^— x^— a: + 1. As this,

when placed equal to zero, is too high to solve, we find the greatest

common divisor between the second differential coefficient of the given

equation, and the first member of that equation, or, what amounts to

the same thing, the greatest common divisor between x^— x^— x-\- 1,

and its derived polynomial, Zx^— 2a;— 1. This common divisor is

(a;— 1)^ Hence, the given equation contains three values equal to

plus one, and, by dividing out by the factors, (a;— 1) (x— 1) (a;— 1),

or, x^— Zx^ + 3a;— 1, we have left, a;^ + 2a; + 1 = 0. Hence, the

other two values arc, — 1 and — 1.

7. Solve the equation, a;^ + a;^— 5a;'— a;^ + 8a;— 4=0.
Ans. a: = + 1, + 1, + 1, — 2, — 2.

8. Find the five values of the equation, a;^ + 2a;^— 16a;— 32 = 0.

Ans. +2,-2,-2, +v/^=4;—v/^iT

9. Find the values of the equation, x^ -\- x^— 2a*— 16a:^— 16x +
32 = 0. ^7w. + 1, + 2, —2, — 2, +^"=^47—^:34:

10. Find the values of the equation, x"— (2a + h)x^-\- (0^+ 2ah)z

— en = 0. Ans. + a, + or, + J.

11. Solve the equation, x^— 2 (a + i)x=' + (a^ + 4ai + l'^)x^—.2

(a'h + aW)x + aW = 0. Ans. + a, -\- a, + b, + b

39*
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DERIVED POLYNOMIALS.

476. We have liad occasion to use the relation, x = a-\- i/,m trans-

forming the general equation in x into another in i/, such, that the

second term was wanting. But the transformation in terms of y and a

is of more general application. Sometimes a is an undetermined con-

stant, whose value is afterwards determined in such a manner as to

make the equation fulfil a given condition. Sometimes a is a deter-

minate number or quantity, which expresses the difference between

the values of the given equation and another which we wish to form.

Suppose, for instance, we wished to transform the equation, x^— x'^ +
4a; 4- 5= 0, into another in ?/, such, that each value of x should exceed

by 2 each corresponding value of i/. Then, a must be made equal to

2 in the relation, x = a + i/, and we must substitute 2 + y for x

wherever it occurs. Hence, the equation in 7/ would be (2 -f- i/y—
(2 -f 7/y + 4(2 -|- y) -f 5 = 0, or, expanding and reducing, ^ -f- 5^^

-f 12y -f 17 = 0. In this case, the transformation is easily effected

by actually substituting the value of x in terms of y, and developing

the several binomials in the new equation. But, when the given equa-

tion is of a high degree, this process is tedious and impracticable.

Suppose, for example, it were required to transform the equation, a;'^—
40a;" + x}°—2x^ + 8a;^ -f- 5x'— 4a;« + 9x' + 12.r^— x^-{-Sx + 15

= 0, into another in y, such, that the values of x should be less by

unity than the corresponding values of y. Then, a = — 1 in the re-

lation, X = a + ^, and we must substitute for x, wherever it occurs,

(y— 1). It is plain that the development of the several binomials in

the new equation will be exceedingly tedious.

The method of derived polynomials enaUes us to effect the required

transformation in y without suhstiiuiion and development.

Let VIS resume the equation,

^m ^ pa;n.-l _|_ Qa;m-2 -f To! -f U = 0,

and let us suppose, as before, x = a-{- 1/.

The new equation in y will then be

(a + 2/T + P(« + ^/r-' + Q(« + y)"-' T(a-f y)+ U = 0.

Let us assume

(a -f 2/r + P(a +y)-' + Qia + ijT-' T(«. -f 2/) + U = A
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Making y=0, we get

a" + Pa"-' + Qa"-' + Ta + U = A.

Differentiating tlie given equation, and dividing by dy, we get

K« +3/)"-' + P(»^— 1) (« + VT-'' + Q("^— 2) (a + yY^
-I- T = B + 2Cy 4- 3D/ + 4E/ (R).

Now, make y = 0, and denote by A' what B becomes in tbat case,

we get

ma-"-' 4- (wi—1) Pa'"-^ + (m—2) Qa""-^ + T = B = A'.

Differentiating (R), we get

m(m— 1) (a + ^)"-2+ (m— 1) (m— 2) P(a + y)"-^ 4. (m— 2)

(m— 3) Q(a+ y)°'-» + &c. = 2C + 2 . 3Dy + 3 . 4E/ + &c. (S).

Making y = 0, and representing by A" what 2C becomes, we get

m(m— 1) a—2 + (m— 1) (m— 2) Pa""^ + (w— 2) (m— 3) Qa"-*

+ &c. = A" = 2C.

Then C ==— ^^ (»^—1) ft""" + (^?^— 1) (m— 2) Pg-"-^ + &c.

2 2

Differentiating (S), we get

m(m— 1) (m_ 2) (a + y)"-^+ (m— 1) (m— 2) (m— 8) P(a+^)°'--»

+ (m— 2) (m — 3) (m — 4) Q(a + y)""^ + &c. = 2 . 3 . D +
2 . 3 . 4Ey + &c.

Making 3/ = 0, and preserving a similar notation, we have

_ A^' _ ?7i(m—1) (m—2) a"-^+(ni—1) (m— 2) (m— 3) Pa^-^

2.3 273
(«i— 2) (m— 3) (m— 4) Qa-'

H 2~-g h &c.

By proceeding in the same way, all the other coefficients could be

determined. But the law of formation is already apparent, A is what

the given equation becomes when a (or the difference between x and^)

is substituted for x ; A' is formed from A, by multiplying the coeffi-

cient of a in every term by its exponent, and then diminishing that

A"
exponent by unity ; -^ is formed in precisely the same way, except

A'"
that the result is divided by 2 ; -5- is formed in like manner from A",

o

except that the result is divided by 3.

A""
-J- is formed according to the same law from A'", the result being

divided by 4.
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477. To transform an equation into another, in which the values of

the new unknown quantity shall differ from those of the old by some

constant quantity, we have then this

RULE.

I. Replace x in the given equation, wherever it occurs, hy the assumed

difference, and call the result A.

II. Find the derived polynomial of A, and call it A'.

III. Fiiid the derived polynomial of A', and call it A".

IV. Find all the other derived polynomials in the same, and calcu-

late their values.

V. Substitute the values so found in the formula, A + A'^ +

1—9 "^ 1

—

9^—R '^ ^^' ^^ ^' ^"^^ '^*^ transformed equation will he

found.

EXAMPLES.

1. Transform the equation, x^— a;^ + 4x + 5 = 0, into another in

y, so that the values of x shall exceed those of y by 2.

Then we have, by the rule,

(2/— (2/ + 4 (2) + 5 = 17 = A,

3(2)2— 2 (2) +4 ^12 = A,'

6 (2)— 2 = 10 = A",

6 = 6 = A'",

= = A'-.

Hence, the formula, A + A'y + —^ + -—-^ + &c. = 0, gives

17 + 12y + 5y^ + ?/' = ; or, changing the order of the terms, i^ -\-

5y 4- 12y +17 = 0, the same as before found.

2. Transform the equation, x^— 5x' + 4*^ + x + 1 = 0, into an-

other in y, so that the values of x shall exceed those of y by unity.

(1)6_ 5 (1)5 _j. 4 (1^. ^ (1). ^ 1 _ 2 = A,

6 (1)^— 25 (1)^ + 8 (1) + 1 = — 10 = A',

30 (1)*— 100 (I)'' + 8 = — 62 = A",

120 (1/— 300 (1)^ = _ 180 = M",
360 (Xf_ 600 (1) = — 240 = A'^
720 (1) = 720 = A^,

720 = 720 = K-K

2e
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Hence, tlie transformed equation is

2 _ 10^— 31/— SOj/^— lOy + Qy' + y = 0,

or, / + Q,y'— 10/— 30/_ 31^/^— lOj^ + 2 = 0.

3. Transform the equation, x*— 8aj' + Ox^ + £c + 12 = 0, into an-

other, whose second term shall be wanting.

Ans. /— 15/— 21y + 2 = 0.

In this example, x = y— (~|) = y + 2 (Art. 455).

4. Transform the equation, 2a;' -\- x^ -\- x— 4 = 0, into another,

whose second term shall be wanting. Ans. y^ + f'^y
— If i

= 0-

First divide the given equation by 2, to bring it under the proposed

form. Then, make x = y—3 = y— ^.

5. Transform the equation, — x^ -\- x^-^- x— 1 = 0, into another,

whose second term shall be wanting. Ans. /— 1?/+ J-| = 0.

First bring the equation under the proposed form by multiplying by

minus unity. Then, make x = y -\- ^.

6. Transform the equation, x^— ISx^ + 135x^ + x'— a;^ + 2x+ 4

= 0, into another, whose second term shall be wanting.

Ans. / + 541/ + 3653/ + 8771^/ + 7318 = 0.

Why did the second and third terms disappear together ?

7. Transform the equation, x' — 1x^ + x^— 2x* + x^— Sx^ + x

-J- 8 = 0, into another in y, such, that the values of y shall be less by

unity than those of x.

Ans. /— 20/— 67/— 102/— 86/— 40y = 0.

Why is the absolute term wanting in the transformed equation ?

Why did the second term disappear ?

8. Transform the equation, 4x''— 3a;^ + 2x— 3= 0, into another

in y, such, that the values of y shall be greater by 2 than those of x.

Ans. 4/— 27/ -f Q2y— 51 = 0.

It will be seen that + 1 is a value of x in the given equation, and

+ 3 is a value of y in the transformed equation, as it ought to be.

9. Transform the equation, Ax*— Sx' + 2x^—Sx = 0, into another

in y, such, that the values of y sTiall be less by unity than those of x.

Ans. 4/ + 18/ + 17/ + lOy = 0.



GENERAL THEORY OF EQUATIONS. 467

Why is the absolute term wanting in tlie transformed equation?

Why are all the terms positive ?

10. Transform the equation, 5.r^— 50x^ + SOOx^ + 9x^ + a-— 165

= 0, into another in y, such, that the values of y shall be less by 2

than those of x. Ans. hrf + 40V + 1237y + 838 = 0.

Why did the second and third terms disappear ?

EQUATION OF DIFFERENCES.

478. We have now shown how all the rational values could be ob-

tained, either by operating directly upon the given equation, when of

the proposed form, or upon the transformed equation, and then, by means

of the relations between the values in the transformed and given equa-

tions, ascertain the rational values in the given equation. If we would

next divide the given equation by the factors corresponding to its ra-

tional values, and place the quotient resulting equal to zero, we would

have a new equation containing only irrational and imaginary values.

Before explaining the method of finding the irrational values, it becomes

necessary to show how to find an equation, whose values shall be equal

to the difierence of values in the given equation. Such an equation is

called the equation of differences.

Let x', x", x'", &c., be values in the given equation, and i/ a value

in the equation of difiFerences sought. It is plain that this equation

will be of the same form, whatever pair of values we assume in the

given equation. Hence, we may assume y = oo'— x\ then a;"=
y -f cc'. Since x" is, by hypothesis, a value in the given equation, .t°

+ Px""-* -\- Qx'"-2 _|- Ta; + U = 0, by substitution, we will

have a;'"» -f Px""-' -f Qx""-^ Trc" + U = 0. Now, if we

replace aj" by y 4- ^' in this equation, and develop by the formula in

7,2

Article 477, the new equation will become Xq + X^y -\- Xarp—^ + X3

rz—^—^ -j- &c. = ; in which Xq denotes what the given equation

becomes when x' is substituted for .r, X, is the derived polynomial of

Xoj X2 the derived polynomial of X„ &c., &c. But, since x' is, by

hypothesis, a value, Xo is equal to zero, and, by dividing by y, the new

equation becomes X, + ^^zr~ -f X3:j—'^—-x -f &c. = (D), and is
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tlie equation, which combined with the given equation, will give the

one sought.

479. It is obvious that, to obtain (D), we have only to get the deri-

vative of the first member of the given equation, add to this the second

derived polynomial, multiplied by the first power of y, divided by 1 . 2,

plus the third derived polynomial, multiplied by rf, divided by 1 . 2 . 3,

plus other derived polynomials, multiplied by corresponding powers of

y with their appropriate divisors.

As a simple illustration, let it be required to find the equation of

diiferences to the equation, x^ — 4 = 0. Then X, = 2x, X2 = 2, and

(D) becomes 2a3 + y ==:; 0. Eliminating x between these equations,

by the method of the greatest common divisor, we have,

4x2— lQ\2x-\-y
4lx^ -f 2xy 2x— y = quotient.

— 2x1/— 16

— 2xi/—f
1/^— 16 = 0, equation of difi"erences.

The values of y in this equation, are + 4 and — 4, and those of x
in the given equation, + 2 and — 2, the difference between which is

either + 4 or — 4.

If in the equation, 7/^— 16 = 0, we make 9/^ = z, we will have z—
16 = 0, and the value of z will be equal to the square of the difference

of the values of x. Such an equation is called the equation of the

square of the differences.

The degree of the equation of differences will be expressed by the

number of combinations of m values, taken two and two, or by

m^m— 1), and, since this product is always even whatever may be the

value of m, the sought equation will always be of an even degree.

As a second illustration, let it be required to find the equation of

differences to the equation, x^— x— 6 = 0. Then, X, = 2>x'^— 1,

X2 = 6x, X3 = 6, X4, X5, &c. = 0, and equation (D) becomes ox^— 1

-\- Zxy + if = ^ ; or, Zx^ + Zxy -\- if— 1 = ; and, preparing the

given equation for division by multiplying by y, we have



GENERAL THEORY OF EQUATIONS. 469

3X' — 3a; — 18
|
3z'+3g y+y'—1

3x^+3x^!/+xy^—x a>-]/=Quotient.

—3x^y—(y''+2ix—18
I

Sx-'+Zxy+y^-l
-Sx^y-Sxy'^y'+y 2(jf»-l)

2{y''—\)x + y^— y—l'i
\
6(y'^—l')x^+(5iy^—l)xg+2{y'*—l)^\ 2d Quotient = 3x.

e(y'^—l)x^+3y^x—Sxy—Ux

3{y''—l)xy+biv-\-2{y^—l) = 2d Remainder.

or, 3(y^—y+lS)x+2(y^r)'^ Multiplying by 2(y«-l)
2(1/^1)

Hy' - y + 18) x(y» - 1) + 4(y» - ir I
2(y'^l)x+y°-y-I8

^jy'—y+ 1 8)ar(ya—1 )+3[y'—y+ 18)(y'-y—1 8) | 3(y=—y+18)=:3d Quotient.

4(3/'— l)'-3(y'-y + 18)(y»-y— 18)=0

or, developing 4(/— 3^/* + fi/— 1) — ^f + St/* + 5ii/^ + St/*—
3/— 54j^— 54y + 54y'+ 3(18)^ = ; or, reducing /— 6y^ +V
4- 968 = 0, wliicli is the equation of differences sought.

Now, make y^ = z, and we have for the equation of the square of

the differences a'— 6^^ + 9z + 968 = 0.

In the above development, the alternate terms were struck out. This

was to have been anticipated from what had been said. But we may

show, in another manner, that the equation of differences can contain

only even powers of y.

For, let a, b, c, d, &c., be the numerical differences of the values of

the given equation, then, + «, — a, -f i,— h, &c., will be values in the

equations of differences; and, since the factors corresponding to these

values, permuted in pairs, give us (t/ + a) (3/
— a), (j/ + l) (j/— J), &c.,

the first member of the equation of differences will be, (jj^— a^ (^'—-^^)

(/-cO,&c.
Now, making ^ = z, we will have (z— a") (~— l") (z— c^) &c. =

for the equation of the square of the differences. The degTce of the

last equation will only be half as great as that of the equation of dif-

ferences.

EXAMPLES.

1. Given, x^— 9 = 0, to find the equation of differences.

Ans. /— 86 = 0.

2. Given, x' + 9x 4- 4 = 0, to find the equation of differences.

Ans. / + 54/ + 81/ + 3348 = 0.

After the first division the remainder will be, 2(//^ ^ 9) a; + y + 9?/

+ 12. Multiply the last divisor twice by 2(/ + 9). Then,

after two divisions, you will have 4(/ + 9)' — 3(/ +9y — 12)

(2/^ + ^2/ + 12), which will reduce to the expression above.

40
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3. Given, x^+ ax + J = 0, to find the equation of differences.

Ans. if + Qai/ -\- Da^ if + 4a^ + 27b"- = 0.

First remainder is, 2(y^ +a'^)x + ?/ + oy + oh. Use 2(y^ + aF) twice

as a multiplier.

4. Given, x^— a; = 0, to find tte equation of differences.

Ans. y^— 61/ + dy'— 4 = 0.

First remainder is, 2(y'^— 1) x + y^— y. The coefiicient of x is

used twice as a multiplier.

It will be seen that + 1 and — 1 are values in the equation of dif-

ferences. Dividing by y^— 1, and solving the resulting equation, y'*—
by'^ + 4 = 0, by the rules for binomial equations, we get the four values,

-f 2, — 2, + 1 and— 1. The six values, then, in the equation of dif-

ferences, are, + 2, — 2, and + 1 and— 1, repeated twice. These ought

to be the values, since those in the given equation are, -f- 1 and— 1,

the differences between which are those given above.

IRRATIONAL VALUES.

480. An equation, freed from the factors corresponding to the ra-

tional values, will contain only irrational or imaginary values, or both

irrational and imaginary values. We can best explain the process of

finding the irrational values by an example.

Let us take the equation, x^— 2x'^— 2 = 0, to find one positive

rational value. The superior positive limit is, 1 + 1/2 = 3. Substi-

tuting the natural numbers from up to 3, we find that and 1 give

negative results when substituted for x in the equation, and that 2

gives a positive result. Hence, a value of the equation lies between 1

and 2, and 1 is the entire part of the irrational value.

Now, make x= y + liu the given equation, then the new equation

in y will have values less by unity than those in x. Hence, y will con-

tain the decimal part of the value of x. This transformation can be

most readily effected by the formula of Article 477. We have

(1)5— 2(1)^— 2 = —3 = A.

5(1)*— 6(1)2 =— 1 = A'.

20(1)3— 12(1)' = 8 ^j^n^

60(1)2_ 12 = 48 == A'".

120(1)» = 120 = A-.

120 = 120 = A^
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Then, A 4- AV + 1-^ + ^i-^ +1.2 ' 1.2.3 ' 1.2.3.4 ' 1.2.3.4.5

+ &c. = becomes, — S — y + Ay'' + Sf + 5y* + y^ = ', or,

changing the order of terms, y^ -f- 5y* + Sy^ + 4?/*— y— 3 = 0.

If, now, we make z= lOy, then y= — . The first figure, then, of

the value of z, in the transformed equation, will be tenths in the value

of y ; and, consequently, tenths in the value of x. The transformed

equation (Article 467) is,

^ + 502" + 800;^^ + 4000;^^_ lOOOOj/_ 300000= 0.

S. p. Limit = 1 + V300000 = 1 + 23 = 24.

The limit is here too great for any practical use. Substituting, be-

tween and 10, we find a change of sign in the results corresponding

to the substitution of 5 and 6. For 5, we have,

(5)H50(5)"+800(5)'+4000(5/— 10000(5)—300000=— 115625.

And 6 gives,

(6)H50 (6)"+ 800 (6)='+4000 (6)^-10000(6)— 300000 = + 29376.

Hence, 5 is the entire part of the value of z, and this corresponds to

five-tenths in y and x. Tliereforc, 1 . 5 is the approximate value of a;,

to within tenths. To get a nearer approximation, let us transform the

equation in z into another in w, so that the values of to shall be less by

5 than those of z. Then iv will contain the remaining part of the deci-

mal value of z. The equation in w is,

lo' -f 75^" -f 2050w' + 24750ii;=' -f 118125io— 115625 = 0.

Making t = 10?p, or lo = — , the transformed equation in t (Art. 467),

will be,

i*-f750<"+205000i=' -1-24750000/2+1181250000^— 11562500000 = 0.

On trial, we find that 8 and 9 give results with contrary signs ; hence,

8 is the entire part of the value of t, and corresponds to -8 in w, and

to .08 in y and x. We have, then, for the approximate value of x,

1-58. The process would be, in all respects, the same, were a negative

value to be found, except that we would find the negative limits.

Let us take, as a second example, x^— lOx' -{- 6x + 1 = 0.

We find that and 1 give results with contrary signs, and so do 3



472 GENERAL THEORY OF EQUATIONS.

and 4. Let us find the decimal part of the value, whose entire part ia

3. Mate x = y + S. The equation in y will be,

rf + m/ + SOy' + ISOy" + Uly -8=0,

and that in z,

z^ + I50z* + 80002» -f ISOOOOz^ + UlOOOOz— 800000 = 0.

Substituting and 1, we find a change of sign. Hence, is the

tenths of the given equation. Making z = + «;, we have,

to' + IbOw* + 8000!«=' + 180000i«^ + 1410000«;— 800000 = 0.

The equation in t, is,

/'+1500<''+800000f^4-180000000«^+14100000000^—80000000000=0.

We find that 5 and 6, when substituted, give a change of sign.

Now, make f = s+ 5, the equation in s will be,

.s5_^175s^4-830250s^+192226280s2+15960753125s—4899059375=0.

By changing this into an equation in r, making r = 10s, we will find a

change between 3 and 4. Hence, 3 053 is the approximat-e value of a;

to within thousandtlis.

481. In this process we have proceeded upon the hypothesis, that

but one real root lay between two successive integers. To ascertain

whether this is the case, we have only to transform the given equation

in X into another in y, so that the values of y shall be the squares of

the difi"erences of those of x. Next, find the inferior limit of the posi-

tive values of y. Suppose D^ to be this limit ; then, since D^ is less

than the least value in the equation of the square of the differences,

v^D^, or D, will be less than the least difference between the values in

the given equation. Now, if D be ^ 1, it is plain that no real root

will be comprised between two successive integers, and the process

described above can be pursued. A similar course of reasoning can

be applied to D'^, the inferior limit of the negative values in the equa-

tion of the squares of the differences.

But, if D <^1, then two or more real roots may be comprised be-

tween two consecutive integers. In this case, we have only to substi-

tute a series of numbers, whose common difference shall be = or <^ D.

Then, those numbers, which give results with contrary signs, will have

but one real value between them. Another method of frequent appli-
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cation, when D is a proper fraction, -, is to transform the equation in x

into another in y, by making x = -. Then, the differences of the values

of y will be greater than unity, and only one real root will lie between

the successive integers in the transformed equation. For, let x' and

x" be consecutive values of x, then x' = -, and x" = — . Hence,
r r

(x'— x") r= y'— y". Then the differences between the consecutive

values of 2/ is r times greater than between those of x, and, as r is the

denominator of D, y'— y" must be greater than unity.

EXAMPLES.

1. Find one irrational value in the equation, x^— 8.1'+ Ix^— 56 = 0.

Ans. 2-828.

2. Find one irrational value in the equation, a;* + 3ic'— 4x^— 15a;

— 5 = 0. Ans. 2-236.

3. Find one irrational value in the equation, x^-\- 2x'— 2ar^— 4 = 0.

Ans. 1-264.

4. Find one irrational value in the equation, .x'— 1x +7 = 0.

Ans. —3-048.

5. Find one irrational value in the equation, x* -\- x^— 12:c^— 17a;

— 85 = 0. Ans. 4-123.

6. Find one irrational value in the equation, x^— 2 = 0.

Ans. 1-414.

7. Find, by the process of irrational values, one value in the equa-

tion, x^— 4 = 0.

Ans. x^2, the decimal part in all the transformed equations being

zero.

8. Find one irrational value in the equation, x* + x^— 25x^— 26a;

— 26 = 0. Ans. 5-099.

482. If we apply the foregoing process to an example of the form,

x* + 14x^— 49 = 0, the consecutive numbers will give no change of

sign. One value in the equation of differences will be found to be

zero, and also one in the equation of the square of the differences.

40*
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D'^ and D are tliea botli zero. "When this is the case, we may infer the

presence of equal values. Ou trial, as in Art. 475, we find x^— 7 the

greatest common divisor between the first member of the given equa-

tion and its derived polynomial. We see, by this example, that the

preceding method is only applicable to equations which have been freed

from their equal values.

While the foregoing method afi'ords a complete solution to the pro-

blem of finding the irrational values of numerical equations, yet it is

of diificult application to equations of high degrees, and, in all equa-

tions, whether of low or high degrees, the difl&culty increases with the

number of decimal places sought.

NEWTON'S METHOD OF APPROXIMATION.

483. This is known as the method of successive substitutions, and

consists in substituting, in the given equation, the natural numbers be-

tween the limits, until results with contrary signs are obtained. Let a

be the least of two consecutive numbers which give results with con-

trary signs. Then a is the first figure, or entire part of the value

sought. Substitute a -{- y for x in the given equation, y being a small

fraction, whose second and higher powers may be neglected. Hence, y
may be found in the transformed equation, and a + y will constitute

the first approximation to the value of x. Let a -1- y be denoted by h,

and make x = h -{ y', y' being a small fraction, whose higher powers

may be neglected. The transformed equation will give the value of

y, and this, with 6, will constitute the second approximation to x.

Calling h + y', c, and making x = e + y" , we can get a third approxi-

mation to the value of x, and may thus carry the approximation to as

many places of decimals as we please.

Let us take, as an illustration, the equation, a;*— 2 =0. Substi-

tuting between the limits, we find that 1 and 2 give different signs.

Then 1 is the entire part of the value. Make a; = 1 -f y, and reject

y^, we will have 1 -j- 2^/— 2 = 0, or y = J = -5. Hence, for first

approximation, x = 1-5. Now, make x = 1-5 +y, and we will have,

•25
after rejecting y'\ 2-25 + 3/— 2 = 0, or, / = — -^ = — -0833.

Then, for the second approximation, we get cc = 1 -5— -0833 = 1-4167.

Place X = 1-4167 + y", we get

2-8834/' = — -00303889, or, y" = — -00107.

Then, for a third approximation, x = 1-4167 — -00107 = 1-41563.
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484. The accuracy of the process evidently depends upon the un-

known quantity introduced being a small fraction. "Whenever, then,

the substitution of the natural numbers make y an improper fraction,

more minute substitutions must be made, unless we intend to carry the

approximation to several places of decimals.

Thus, take the example, x'' + x— 8 =; 0, we find that 1 and 2 give

results with contrary signs. Then, 1 is the entire part of the value

sought. Making x = y + 1, we have, 3/^ + 3y + 3^^ + 1 -|- y + 1

— 8 = 0, or, rejecting the higher powers of y, 4^/— 6 = 0. Hence,

y = &=. 1*5, an improper fraction. Then, for the first approximation,

we have, x ^ 2-5, a result obviously too great.

Next, place x = 2-50 + ?/, we have, after rejecting higher powers

of y, (2-50)» + 3 (2-50)2y + 2-50 + y— 8 = 0. Then, y' = — -512,

and, for the second approximation, x = 1-988. Making now x ^
1-988 + y", we will have, after rejecting the higher powers of if'>

(1-988)'' + 3 (l-988)y' 4- 1-988 + y"— 8 = 0,

or, 7-856862272 + ll-856432y'+ 1-988 -f y"— 8 = 0,

or, 11-856432/' = _ 1-844862272.

Hence, y" = — -144 nearly, and, for a third approximation, x = 1-844,

which difi'ers from the true value by less than one hundredth. We
see, from this example, that the error was considerable when y was an

improper fraction, but became reduced by carrying the approximation

farther. A closer approximation could have been obtained, without

carrying the operation so far, by making minute substitutions. A
change of sign would have been found between the results corresponding

to 1-8 and 1-9.

LAGRANGE'S METHOD.

485. This differs from Newton's, in that the unknown expression

added to complete each successive value is fractional in form, and in

that the transformation is made into an equation involving this un-

known quantity. Thus, let a be the entire part or number next below

the value, we make x = a H— , and get a transformed equation in y,

such, that the values of y must be greater than unity. Let h be the

entire part of the value of y, then, for the first approximation, we have

a: = a 4- - =— . Next, place y = & A— . The transformed

equation iu ^ must have its values greater than unity. Let c be the
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entire part of tlie value of y' . Then, approximatively, y = h {— =

, and, for a second approximation to x, we have, x ^ a -^^ - = a

c . . 1+ -. To find a third approximate value for x, let y = c -|

—

j^
CO -\- I y 1

and we may thus continue to approximate to the value of x until the

result is as accurate as desired.

To apply these principles, let us take the equation, x^— x— 5 = 0,

We see that 1 and 2 give contrary signs, hence, cc = 1 + -. Substi-

tuting this value of cc, we have 5^^— 2f/^— 3y— 1 = 0. The entire

part of the value of y is 1, hence, for first approximation to x, we have

X — \ \— = 1 + 1 = 2, which is plainly too great. Next, making

y = 1 + -, we get y'^ — %y'^— 13/— 5 = 0. In this, 9 and 10

give contrary signs. Then, y = 1 + -^ = Lo, and a; — 1 + y^^ = 12^

fbr the second approximation.

Now, make ?/' = 9 -|—^, and the transformed equation in y" will be,

4iy"'— 86^"^— 19y'— 1 =: ; a change of sign between the re-

sults given by 2 and 3. Hence, y' = 9| = i^^, y = 1 + -2^ = |^,

and a; = 1 -f ^a = |fl, for the third approximate value of x. We find

on trial the third approximate value a little too great, and the second a

little too small. Hence, the true value lies between 4f ^^^^ io> ^^^

either of these numbers diflPers from the true value by less than
^ jq.

486. Let us take the simple example, x^— 2 = 0. Place x=^\ •\—

,

y
then, y— 1y — 1 = 0. We find that 2 and 8 give contrary signs.

Hence, for first approximation, x = 1 + i = |. Now, make ?/ = 2 -f-
-»

and the equation in y will become y'"^— 2y— 1 = 0; and, again, 2 is

the entire part of the value. Hence, y = 2 + i == 55 and x=^\ -\- \
=

I,
for a second approximation. On trial, we find | too great, and |

too small, and these differ from each other by a tenth j therefore, the true

value differs from either by less than a tenth. For a third approximate

value we would find, x = |-|, which is a little too great, but is within

g'jj of the true value. The fourth approximate value, ||, is too small,

but differs from the true value by less than g-J-, • By continuing thus

the process, we would find the approximations alternately too great and
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too small, and thus can tell at every step how near we have come to the

true values. We see that Lagrange's method enables us to determine

the proximity to the true value at every stage of the work, and this is

the chief advantage claimed for it over the process of Newton.

EXAMPLES.

1. x^— 7x + 7 = 0. Ans. X = f I,
after three approximations.

2. X*— a-— 6 = 0. Ans. .r = |, after third approximation.

1st approximation, 2 ; 2d approximation, ^ ; 3d approximation, |.

GENERAL SOLUTION OF NUMERICAL EQUATIONS,

487. When we have a numerical equation of any degree to solve, we
must first find its rational values by the process of divisors, if it is under

the proposed form. But, if it is not, we must transform it into another

equation in y, so that the coefficient of the first term shall be plus

unity, and the other coefficients entire. Then, knowing the relation be-

tween 1/ and X, we can determine the values of x when those of y have

been found. Next we must ascertain whether any of the values are

repeated (Art. 475). Having thus found all the rational values, we
next divide by the factors corresponding to them. Then, by means of

the equation of the squares of the difi'crenccs, we can ascertain what

series of numbers to substitute in the reduced equation (Art. 481). The
final step is to find, approximatively, the irrational values by either of

the three processes explained. Now, if the number of rational and ir-

rational values be subtracted from the degree of the given equation, the

difference will be the number of imaginary values.

GENERAL EXAMPLES.

1. Find the three values of the equation, 2x' ~
f- 106a; —

20 = 0. A71S. a; = 1, 5, and 10.

2. Solve the equation, x^— Ux'' + 7x^ + 28a;— 28 = 0.

Ans. x = ±2, 1-356, 1-692, and —3-044.

17a^
3. Solve the equation, x'' -\— |a;—i = 0.

Ans. X = ^, — I, and — 3.
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4. Solve tte equation, x"— lO^c^— 12^2 + 92x + 280 = 0.

A71S. X = 10, and 4-302.

5. Solve the equation, 2x^— 2x* — + -^ -{ x— 1 = 0.

A71S. a; = 1, ^, — J, and =h ,y2.

6. Solve the equation, x''— 4x^— 4x^ + Sdx*— 60x'— 28a:^ +
224a;— 224 = 0.

7. Solve the equation, x*— 2x^— ^\x^ + 22a; + 280 = 0.

Ans. X = 4, and 5-134.

STUEM'S THEOREM.

488. When we have, by means of the process of divisors and the

method of equal values, detected all the rational values, and then, by

the aid of the equation of differences, discovered all the irrational

values, we can determine the number of imaginary values, by subtract-

ing the number of rational and irrational values from the degree of the

equation. When this difference is zero, there are, of course, no imagi-

nary values.

But this method is circuitous, and is, moreover, rendered tedious by

the employment of the equation of differences. Sturm's Theorem de-

termines directly the number of imaginary values, and dispenses tcith

the equation of differences.

Let X = x™ -f Pa;-"-' -f Q^c--^ + +Ta: + U= ie aji equa-

tion cleared of its equal values. Take the derivative of X, and call it

X' ; then, X' = mx^-'-\- (m— l)Px"»-2-f (m— 2)Qx'°-^ -f- -f T.

Now, divide X by X', and continue the division until we get a remaiur

der in a; of a lower degree than X'. Call this remainder, with its sign

changed, X". Divide X', in like manner, by X", and continue the

division until the remainder is a degree lower than the divisor. Change,

in the same way, the signs of all the terms of this remainder, and call

the resulting expression X'". Pursue the same process until we get a

remainder independent of x, which must be so eventually, since the

given equation, by hypothesis, contains no equal values. This will be

the (m— 1)*'' remainder, and all the expressions, including X and X',
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will make up (m + 1) functions. Hence, designate by X^+'j tlie last

remainder, with its sign changed. We will then have the following

expressions, Q, Q', &c., designating quotients

:

X =X'Q -X" (A),

X' =X"Q' —X'" (B),

X" = X"'Q" — X- (C),

X'" = X'vQ"'— X- (D),

X- = X-Q-— X- (E),

X»-' = X-'Q"->— X»+' (W).

In preparing the dividends for division, we may, as in the process

for finding the greatest common divisor, multiply by any positive con-

stant. In like manner, we may suppress any positive constant common

to all the terms of any of the successive remainders.

489. The theorem we have to demonstrate may be enunciated as

follows

:

If we substitute any number, tn, for x in the above series of func-

tions, X, X', X", &c., and count the variations of signs in the results,

and then substitute any other number, as n, for x in the same series,

and count again the variations of signs in the results, the difference

between the number of variations in the tico cases icill exjjress exactly

the number ofreal values between the numbers m a7id n. If, then, m be

taken as the superior limit of the positive values, and n as the superior

limit of the negative values, the difibrencc between the number of vari-

ations will express the total number of real values. When this difiFe-

rence is zero, there are no real values ; when it is equal to the degree

of the equation, all the values are real.

490. The demonstration of the theorem depends upon the four fol-

lowing principles

:

1. M) tico consecutive finctions can vanish for the same value of x.

For, if two functions, as X" and X'", could disappear together, equa-

tion (C) would give = — X'^. Hence, X'^ = 0, and X"' and X*''

being zero, equation (D) would give X^ = 0. And so all the func-

tions in succession would become zero, until we would finally have

X^^' ^ 0. But this would indicate a common divisor, and, conse-

quently, equal values, which is contrary to the hypothesis with which

we set out.
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2, When such a value is given to x as to make any function other

than'K equal to zero, the functions adjacent to the one disajij^earing will

he affected with contrary/ signs.

For example, let X'^= 0. Then, equation (D) will give X'"=—X^;
and, since the own sign of X'^ may be either plus or minus, this equa-

tion may be written X'" = — (± X^). Now, if X'^ be affected with

the positive sign, the second member will be negative; and, since the

signs of the two members of an equation must ^ways be the same, X"'

will be negative, and, therefore, of a contrary sign to X'^. But, if the

own sign of X^ be negative, then the second member will be positive.

Hence, X'" will be positive, and, therefore, of a contrary sign to X^.

3. The disappearance of any function other than 'Kfor a piarticidar

value ofx, will neither increase nor decrease the variations of signs in

the results of the sej'ies, X, X', X", d;c.

Suppose that one of the intermediate functions, as X'"', becomes zero,

for the value x = b. Then, by the first principle, neither X'" nor

X'^ can be zero for x = I ; and, by the second principle, they must

have contrary signs. There is, then, one variation of sign between X'"

and X"^ when x = b. We are to show that this variation was not

caused by the disappearance of X'''. For, however little x =h may

differ from a value of X'" or X''^, h may be taken smaller than this

difference. And, moreover, since a quantity can only change its sign

in passing through zero or infinity, it is plain that, between x = b and

x = b— h, neither X'" nor X^ can undergo any change of sign. They

will still be affected with contrary signs, and, for cc = &— h, we will

have either + X'", ± X'', — X^, or else, — X'", ± X'^, + X\ We
affect X'' with the ambiguous sign, since we do not know whether its

sign is positive or negative. Now, read the double sign either way,

and take either of the preceding expressions, and you will have one

variation. Hence, before x arrives at the value b, which causes the

disappearance of X"', the three successive functions give one variation.

Now, when x passes beyond b, and becomes b + h (h being less than

the difference between b and a value of either X'", or X"), X'" will

change its sign, but X'" and X" will not. Hence, forx:=h-\- h, we

will have either + X'", =f X'", — X^ or — X'", =p X'", + X'. And,

reading the ambiguous sign either way, in either of the above expres-

sions, we will have one variation. Hence, both before and after x

reached the value b, which made X''' = 0, we find a variation of sign

among the three functions. Then x:=b, or the vanishing of the inter-

mediate function, X'\ has not caused that variation.
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4. Every passage ofS. through zero causes a loss of one variation

xchen x is ascending towards the superior positive limit, or again of

one variation throughout the series, X, X', &c., when x is descending

toioards the superior negative limit.

For, let a; = a be a value in the equation, X = 0, and take u lesp

than the difference between a and a value of X'. Then, X will have

a different sign, when a + u is substituted for x, from what it would

have were a— u substituted for x. Hence, in the passage of x from

a— u to a + M, X will undergo a change of sign, but X' will not.

since, by hypothesis, no value of X' is passed over. Neither will any

intermediate function, X", X'", &c., undergo a change of sign unless it

pass through zero, and, by the third principle, such passage will not

affect the total number of variations. Therefore, in the passage of x

from a— « to a + u, either a permanence, existing between X and

X', is changed into a variation, or else a variation is changed into a

permanence.

We will now examine the order in which this change takes place.

Designate by X, what X becomes when x = a— u. Next, develop

all the terms of X by Art. 456; we will have Xi= A— A'm +
A"«^ A"'m'
-j

—

-y — ^j

—

-^—r, + &c> (R)) in which A denotes what X becomes

when xz=a; A' is the derivative of A, A" the derivative of A', &c.

But, since a is a value of .r, A must be equal to zero. Then, equation

(R) may be written, X,=— u {M— i-^ + ,^" — &c.) Now.

u may be taken so small that the first term will be greater than the

algebraic sum of all the other terms within the brackets. Hence, the

sign of the quantities within the parenthesis will depend upon that of

A'. If, therefore, the own sign of A' is positive, the second member
will be negative. Then, X, must be negative, and, therefore, of a con-

trary sign to A'. But, if the own sign of A' be negative, the second

member will be positive. Then, X, will be positive, and X, and A'

will be affected with contrary signs. And, since X, and A' represent

what X and X' become when a— tt is substituted for x, we see that

there is a variation of signs between these functions below a value,

x = u, which satisfies the equation, X = 0. Now, suppose x = a -\- u,

and, therefore, above a value in the equation, X = 0. Develop as

before, designating by Xa what X becomes when a -f u takes the place

A"?f A"'u^
of X. Then, X2 = u (A' + ~—

-^ + ,^ ,^ + &c.), in which u is

41 *2p

"
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so small that the sign of A' controls that of the parenthesis. We see,

that, whether the own sign of A' be positive or negative, Xg must be

affected with the same sign. Hence, when x = a -{- ^l, and, therefore,

above a value, there is a permanence of sign between X and X'.

Therefore, in the passage of x towards the superior positive limit, a

variation is lost, and changed into a permanence between X and X',

whenever X becomes equal to zero ; and, as the other functions neither

gain nor lose variations, one variation only is lost throughout the entire

series whenever X = 0.

If we had begun with a + m, and passed down to a— u, it is evi-

dent that one variation would have been gained, every time that x

reached a value in the equation, X = 0.

So, then, whenever x, increasing or decreasing by insensible degrees,

reaches a value which will satisfy the equation, X = 0, one variation

is lost or gained in the signs of the series, X, X', X", &c. Hence, if

we take any number, as m, and substitute it for x in all the functions,

and count the number of variations in the signs of the results, and then

take any other number, as n, and treat it in like manner, the difference

between the number of variations in the two cases will express the

number of real values lying in the given equation between m and 7i.

Moreover, it is plain that if «i = + oo, and n — — go, this difference

will express the total number of real values in the equation. This

would be equally true if we used the superior positive limit and the

superior negative limit. But, there is this advantage in the employ-

ment of -I- oo, and — oo ; the substitution need only be made in the

leading term of the successive functions, for then the sign of this

term would control the signs of all the other terms in the same

function.

491. Having determined the number of real values, the next step is

to determine the initial figure of each one of theSe values. To do this,

we substitute the natural numbers, 0, 1, 2, 3, &c., until we get the

same number of variations of signs in the entire series as was given by

+ 00. The number that gives the same variations, as + oo, is the

superior positive limit. Substitute, in like manner, 0, — 1, — 2,

— 3, &c., until we get the same number of variations as given by

— oo. We then have the superior negative limit. The least of the

numbers, whether positive or negative, between which a variation is

lost or gained, is the initial figure, or entire part of a real value.

Should there be two or more variations lost or gained between consecu-
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numbers, then there are as many values as there are changes of sign,

which have the same initial figure.

We will illustrate by a simple example, -^'i^

Take equation, x^ + 3*'' — 1 = =*a:."~ • Then its derivative,

X' = 3x2 ^ g^

Now, multiply all the terms of X by 9, and divide by X'. After

two divisions, we will get a remainder of a lower degree than X' ; this

is — 2x— 9. Change its sign, and call it X". Then, X" = 2a; + 9.

Multiply X' by 4, and, after two divisions, by X", we will have a re-

mainder, + 207. Hence, X'" = — 207, and we will have

X = x'-f a;2— 1=0
X' =3^2 + 2a;

X" = 2a; -f 9

X" = — 207.

Making a; = + oo, in the leading terms of these functions, the order

of the signs will be

+ + -1
, one variation.

And for 03 = — oo, it will be

1
, two variations.

Hence, 2 — 1 = 1, real value.

To find the initial figure of this value, make a; = 0, 1, 2, 3, &c.,

and write the signs of the results beneath their respective functions.

We will have

X, X', X", X'",

then, a; = 0, — 1, 0, -f 9, — 207, two variations.

X = 1,
''^•

1, +5, +11, — 207, one variation.

Hence, 1 is the superior limit of the value sought, and is its initial

figure. The decimal part of the value can be found by the process for

the irrational values.

The transformed equation in y,\s, y^ -\- y^— 1 =: ; and that in z,

z' + \^z^— 1000 = 0. And, since 7 and 8 give results with con-

trary signs, 7 is the tenths of the required value. Then, a; = 0-7 is

an approximate value of x.

The approximation may be carried as far as desired by the method

of irrational values.
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We need not substitute 0, — 1, — 2, &c., in the equation, since

there is but one real value, and that has been shown to be positive.

492. Whenever only one variation is lost between two consecutive

numbers, Sturm's theorem affords no advantage over the process for

finding the irrational values, except that of detecting directly the num-

ber of imaginary values. But, when there are two or more real values

comprised between two consecutive numbers, we are enabled by means

of the theorem to dispense with the equation of differences, which

otherwise must be employed to find the decimal part of those values.

We will now explain the chief advantage of the theorem.

Let us take the equation, x"— loi?— 1x^ -f 4 = 0. We will have

the following series of functions :

X = cc^— 2x'— 2a;=' + 4 = 0,

X'^Sx"— 6x2— 4x,

X" = 4x' + 6x2— 20,

X'" = — 42x2— 168x + 300,

X'' = — 2880x + 3840,

X' = —, a constant.

+ oo gives 4- + + H , one variation,

— cx) gives 1 1- H ) four variations.

Hence, there are three real values.

Proceeding as before, we have

X, X', X", X'", X''', X\

When, X =
" x = 1

" x= 2

+ - +
+ + +

+ + + + -

three variations,

three" variations,

one variation.

Since + 2 gives the same number of variations as -f oc, it is the

superior positive limit. Moreover, as there are two variations lost be-

tween 1 and 2, there are two real values between them. Had we sub-

stituted the natural numbers, 0, 1, 2, 3, &c., in the given equation, we

would have found no change of sign, because an even number of values

lay between consecutive numbers. To detect these values, without

the aid of Sturm's theorem, we must either have recourse to the equa-

tion of differences, or to minute and tedious substitutions.
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So, then, it is evident that whenever an equation contains two, four,

six, or any number of even values between consecutive numbers, Sturm's

theorem enables us to detect these values in the shortest possible manner.

493. But, in addition to this, the theorem gives us the means of

finding the decimal part of the irrational values in a shorter and better

manner than by the usual process, as we will now show.

Since 1 is the entire part of both the irrational values, the first step,

according to the usual process for finding the irrational values, is to

transform the equation in x into another in y, so that the values of i/

shall be less by unity than those of x.

The transformed equation in y is

/ + 5/ + 8/ + 2y^- 5y + 1 = 0,

and that in z, is

z^ + 502" + 800z' + 20002^— 500002 + 100000 = 0.

We find, on trial, that 0, 1, and 2 give positive results ; 3 and 4

give negative results; 5, and all numbers above 5, give, again, positive

results. Hence, 2 and 4 are the tenths of the sought values; and

1-2, and 1'4 are those values, approximatively.

Now, if, in the transformed equation in z, two values had lain be-

tween consecutive numbers, we must have had recourse either to

mihute substitutions, or to the equation of differences. If, for instance,

the second value had been 1-26 instead of 1-4, the tenths would have

been the same for both values, and the substitution of the natural num-

bers in 2 would have given no change of sign.

To obviate a difficulty that might occur in more than one of the

transformed equations, we proceed thus.

We take all the functions, X, X', X", &c., and transform them into

others in y, so that the values of y shall differ from those of x, by the

initial figure, which, in this case, is unity. We will then have the

Y = / + 5y' + 8/ + 2/— 5y + 1,

Y' = by' + 20y« + 24/ + 4y— 5,

Y" = 4/-M8/-f24y_10,
Y'".==- 42/ -252^ + 90,

Y'^ ^— 2880^ + 960,

Y" =—, a constant.

41*
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After having found Y, as indicated, we may get its derivative, Y',

and then divide Y by Y', and proceed as we did when getting the

functions, X, X', X", &c. But, in genei-al, the better method is to

transform the functions in x into others in y, so tliat the values of y
shall be less than those of x, by the initial figure of the sought value.

msformed functions in z are

:

= z5 ^ 50z^ + 800z» + 2000z^— 50000z + 100000,

' = 5^" + 2002^ + 24002^ + 4000z— 50000,

The transformed functions in z are

:

Z =
Z'_.„ . , ,

Z" = \z^ + ISOz^ + 2400z_ 10000,

Z'" = _42z2— 2520z + 9000,

Z" = — 2880z + 9600,

Z' = —, a constant.

And we have the following results :
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number of real, and, consequently, the number of imaginary values, we

can see how important the theorem is.

To get the hundredths, the functions in z may be transformed into

others in s, so that the values of s shall differ from those of z by the

initial decimal figures ; in this case, 2 and 4. Then, again, transform

the functions in s into others in lo, so that the values of w shall be ten

times greater than those of s. We will then have a series of functions,

W, W, W", W", &c., in which we may substitute the natural num-

bers, 0, 1, 2, &c., until we get as many variations as -j- oo gives in the

series. The least of the consecutive numbers, between which a loss of

variation occurs, will be hundredths in the sought value. We, of

course, will have two series of functions in to, the one corresponding to

2, as the initial figure of decimals, and the other to 4.

495. Since there were three real values in the equation, x^— 2x'—
2x^ + 4 = 0, and we have found but two positive values, the other

must be negative. To determine this negative value, let us resume

the functions,

X = x5— 2x'— 2x^ + 4 = 0,

X' = 5a;''— Qx^— 4:X,

X" = 4x» + 6x''— 20,

X'" = — 42a;2— 168x + 300,

X'' = — 2880x + 3840,

X" := —, a constant.

2, — 3, &c., in the foregoing series, we will

X", x^

+ —, three variations,

+ —, three variations,

+ —, four variations.

And, since — 2 gives the same number of variations as — oc, it is

the superior negative limit. And, since a gain of variation occurs be-

tween — 1 and — 2, the entire part of the negative value is — 1. In

this case, we know that there is but one negative value ; we may then

proceed at once to find the decimal part of this value by the usual

process for irrational values, without forming the functions, Y, Y',

Y"; &c.

Substituting 0, —
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. The transformed equation in ^ is

2^'— 5/ + 8/— 6^^ + 3y + 3 = 0,

and that in z.

z5_ 502^ + SOO^^'— 6000/ + 30000z + 300000 = 0.

A change occurs between 4 and 5. Hence, 4 is the tenths of the

sought value, and we have x — — 1-4 for the approximate value.

Now, diminish the values in the equation in z by 4, and the trans-

formed equation in s will be

8^— 208" + 1760s='— 21040s2 + 130480s + 21536 = 0,

and that in w will be,

Mj5—200wHl76000w;='—21040000«;2-^1304800000w+2153600000=0.

A change of sign occurs between the results after the substitution

of— 1 and — 2. Hence, 1 is the hundredths of the negative value.

And we have, for a second approximation, x=— 141.

Hemarh.

496. There is one point of considerable importance in the demon-

oration, which deserves to be attended to. It has been shown that a

variation is lost or gained between X and X', every time that X be-

comes equal to zero, or that x passes a value. It might be asked, then,

Why not confine the substitutions to X and X' ?

It is to be observed, that a change of variation only takes place be-

tween X and X' when very minute substitutions are made. For, in

the demonstration of the fourth principle, we supposed ii to be indefi-

nitely small. Now, if we substitute a number, p, which will make the

signs of X and X' contrary, and again substitute another, jj', there being

two values of X, and none of X', between p andp', then X and X' will

still be affected with contrary signs. So, that, between p and p', there

will be no change of variation, though there are two real values. But,

if one value of X' lies between p and p', there will be one variation

lost, and but one. For, whilst X changes its sign twice, X' will change

its sign once.

Take X = ex''— 5u; ^- 1 ; then, X' = 12x— 5.
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There is a variation between X and X' when x = 0, and this is

changed into a permanence when x = 1. There are two values of X
between and 1, and one of X'.

Again, if there were three, five, or any odd number of values of X
passed over, and none of X', there would be one variation lost or

gained, and but one. But, if, at the same time, an odd number of

values of X' were passed over, there would be no change of variation.

It is plain, then, that the loss and gain of variation between X and X'

will only correspond to the number of real values, when the substitu-

tions are so minute that no value of either X or X' is contained be-

tween them.

Scholium.

497. Whenever any function is constantly positive for all values of

X, we need not form any other functions, but only count the number

of variations given by + oo, and — oo, in the constantly positive func-

tion, and in the functions which precede it. For, if we formed the

succeeding functions, they would give tlie same number of variations

for -(- CO that they would for — oo. Hence, the difference between

the number of variations of these functions must always be zero. To

show this, we take for granted that a function, which always remains

positive for all values of x, must be of an even degree, since it will

contain only imaginary values. The next succeeding function may
have its leading term either positive or negative, but the nest must be

negative, since any value that reduces the function, consecutive with the

positive one to zero, must cause the adjacent functions to be affected

with contrary signs. All the functions of an odd degree may be either

positive or negative, but those of an even degree must be alternately

positive and negative.

Let x^ + mx^ + &c., be the constantly positive function. We will

then have the series,

+ x^ + mx^ + &c. = X',

± n^K^ + &c.
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Now, suppose the ambiguous sign to be plus througliout, we will

have for -f oo, these results,

+ H h + H J
3 variations,

and for — oo, these results,

-\ 1
, 3 variations.

Next, suppose the ambiguous sign to be minus throughout, then,

— 00 will give

+ -\ H + H J
3 variations,

and + oo will give

H 1 , 3 variations.

We will find like results when some of the ambiguous signs are

taken as positive, and the rest as negative.

GENERAL EXAMPLES.

1. Given, x^— x^— 7 = 0, to find x.

X = x''— x'— 7 = 0,

X' = Sx''— 2x,

X" = 2x + 63,

X'" = —, a constant.

+ oo gives + + H , 1 variation,

— oo gives (- ^ , 2 variations.

Hence, one real value, and x = 2-310.

2. Find one value of x in the equation, x'^— 2x' -f x^— 5 = 0.

Ans. X = 2-076.

X = x*— 2x^-j-x^— 5 = 0,

. X' = 4x^— Qx^ + 2x,

X" = x'— x + 20,

X'" = 2a;— 1,

X'^ =— A, a constant.

4- 00 gives + + + H , 1 variation,

— oo gives -\ 1
, 3 variations.

Hence, two real values.
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3. Given, a;''— a;— 7 = 0, to find x. Ans. x = 2-086.

X = a;='— a;— 7 = 0,

X' = 3x^—1
X" = 2x + 21,

X'" = — A.

+ 00 gives + + -I , 1 variation,

— ex gives 1 , 2 variations.

Hence, one real value.

4. Given, x^— x^ + 7 = 0, to find x. Ans. a: =:— 1-63.

X = a:^— a;* + 7 = 0,

X' = 3x''— 2a:,

X" = 2a;— 63,

X'" = — A.

+ 00 gives + 4- H J
1 variation,

— oo gives 1 ,2 variations.

Hence, one real value.

DESCARTES' RULE.

498. ^4.?!. equation cannot have a cp-eater number of negative values

than there are permanences of sign from + to +, or*from — to —

;

nor can it have a greater number of positive values than there are

variations of sign from + to —, or from — to -\-

.

When the adjacent terms of an equation are affected with the same

sign, a permanence is said to exist between them ; and when they are

affected with contrary signs, there is a variation between them.

In applying Descartes' rule to an equation, every sign is read twice,

except the first and last. Thus, in the equation, x*— 4x^ -f 12a;^ +
X— 5 = 0, there is a variation between the first and second terms, a

variation between the second and third terms, a permanence between

the third and fourth terms, and a variation between the fourth and

fifth terms. In all, there are three variations and one permanence.
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When a term is missing from an equation, it must be supplied witli

tlie coefficient, ± 0. Then, in reading the signs, we must first count

the variations and permanences, regarding the ambiguous sign as posi-

tive, and then count again, regarding the ambiguous sign as minus.

Thus, taking the equation, x^— 4 = 0, we must write it x^ ±0x—
4 = 0. Counting the upper sign, we have a permanence between the

first and second terms, and a variation between the second and third

terms. Counting the lower sign, we have a variation between the first

and second terms, and a permanence between the second and third

terms. In whatever way, then, we read the ambiguous sign, there will

be one permanence, and one variation.

If there are any number of missing terms, they must be supplied in

like manner with positive or negative zero coefficients.

499. To demonstrate the rule of Descartes, it is necessary to show

that the multiplication of any equation by a factor, corresponding to a

negative value, will introduce into the new equation at least one more

permanence than existed in the old ; and that the multiplication by a

factor, corresponding to a positive value, will introduce at least one

more variation.

1st, Let us take the equation, x"'— Px"-' + Qx'^-^ + Rx™""—
Sa;""^ . . . . + Tx— U ^ 0, and multiply by a factor, x + a, corres-

ponding to a negative value. The resulting equation will be

a;m+l_p|.^n, + Qbm->+R|x'»-^—S|x»-=' -fTlx"—Ulx =
-fal —Pal +Qa\ +'Ra\ — Sal +Tal—Ua ^'

Now, it is plain that, if we suppose the coefficients in the upper

column are, throughout, greater than the corresponding coefficients in

the lower column, there will be the same number of permanences in

the new as in the old equation, until we get to the last two coefficients

(the coefficients of x and x°), we will then have one more permanence

than in the given equation. And, if we suppose the coefficients of the

lower column to be greater throughout, there will be a new permanence

between the first and second terms, and the same succession of signs in

the remaining terms. Moreover, it is evident, that if the lower column

sometimes prevailed, and sometimes did not, there might be more than

one permanence introduced. For instance, if a were greater than P,

Pa less than Q, Ra greater than S, T greater than Sa, Ta greater than

U, there would be but one variation in the new equation.
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It is even possible to change all the variations into permanences, by

multiplication by a factor corresponding to a negative value. As an

illustration, take the equation, x^— 2a;* + \2x*— 8x^ + 36x-— x •\-

15 = 0, and multiply by cc + 4. The new equation will be,

x-'— 2.\x^ + 11\x^— Slx^ + 36|a;3— 1
j

x^ + 15 Ix =
+ 41 —si + 48

I
— 32

I + 144 I
— 4

| + 60'

or, x' + 2a;« + ^x' + 40^" + 4x=' + 143x'= + llx + 60 = 0.

By this example we see that an equation, containing only variations,

is changed into another containing only permanences, by multiplying

the former by a factor corresponding to a negative value. Seven per-

manences have been introduced where none existed before. And, by

recurrence to equation (M), we see that it is impossible to read the

signs in any order, without having one more permanence than in the

given equation. Now, the given equation may have been one of the

first degree, m being equal to one, and P, Q, K, S, and T being equal

to zero. Then, if the sign of U were positive, there would be one

negative value, and conversely. The new equation (after multiplica-

tion by x + ci) would be of the second degree, and would contain, at

least, one more permanence than the old. And, by multiplying this

new equation by another factor corresponding to a negative value, we

would introduce, at least, one more permanence. And so, by contiuu

ing the process, it could be shown that, whatever might be the degree

of the equation, the number of permanences must always be equal to,

or exceed the number of negative values.

500. 2d. By a similar course of reasoning, we could show that the

the multiplication by a factor corresponding to a positive value would

introduce, at least, one variation ; or, in other words, that the number

of positive values can never exceed the number of variations.

Take, as an illustration, the equation,

a;6_ 4x5 + i2x' + 8.x3 + SO.r^— x -f 15 = 0,

and, multiply it by the factor, x— 2, the resulting equation will be,

a;'— 6x« -f 20x5— lOx'' + 14x'— 61x2 -f 17x— 30 = 0,

and has gained three variations.

501. It is plain that the preceding reasoning has been on the sup-

position that a was a real value, otherwise we could not, in equation

42
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(M), have instituted any comparisons betweeij a and — P, — Pa, and

4- Q, + R«> and — S, &c. In case, then, that there are imaginary

values in an equation, the rule of Descartes only points out limits, be-

yond which the positive and negative values cannot go. But, when

the equation contains only real values, the number of positive values

will be exactly equal to the number of variations, and the number of

negative values exactly equal to the number of permanences. To show

this, let m = degree of the equation, ?i = number of real negative

values, p = number of real positive values, h = number of variations,

b' = number of permanences. A slight inspection will show that, in

case of real values, b + b' = 7n ; and we know that n + p = m.

Hence, b -\- b' = n -\- p. But, since n cannot exceed b', and p cannot

exceed b, we must have n = b'. For, if ra <^ 6', then necessarily

p^ b, which cannot be. In like manner, we could show that we

must havej9 = 5.

Corollari/.

502. In case of there being one or more missing terms in an equa-

tion, the rule of Descartes will enable us to detect imaginary values.

We have only to supply the missing terms with plus or minus zero

coefficients, count the variations and permanences when the upper sign

is taken, and then again, when the lower sign is taken. If there be

any discrepancy in the results, there will be imaginary values. Thus,

take cc^ + 4 = ; supplying the missing term, we have x^ ± Ox -^ 4:

= 0. The upper sign taken in connection with the other two, gives

two permanences, whilst the lower gives two variations. These dis-

crepant results indicate imaginary values.

Take x*-\-Sx^^4: = 0, then, x* db Ox' + Sx^ ± Ox— 4 = 0.

In one case, we have one variation and three permanences ; in the

other, three variations and one permanence. The difference in the two

readings again indicates imaginary values.

GENERAL EXAMPLES.

1. What are the values in the equation, x^— 2x^— 7x -|- 1 = ?

2. What are the values in the equation, x"— 7x -f 1 = ?

3. What are the values in the equation, x''— 6x* -f 7x^— Sx* -|-

9x«4- 10x2— 11x4- 12 = 0?
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4. Wliat are the values in the equation^ x"— 1 = 0?

5. What are the values in the equation, x^— 1 = 0?

6. "What are the values in the equation, x^ + 1 = ?

7. What are the values in the equation, x^ + 4a;^ + 6x^ + 4a; +
1 = 0?

ELIMINATION BETWEEN TWO EQUATIONS
OF ANY DEGREE.

503. When one quantity depends upon another for its value, it is

said to be a function of the quantity upon which it depends. Thus, in

the equation, y = 'Zx— 4, ^ is a function of x, because every change

in the value of x will produce a corresponding change in the value

ofy.

The mathematical symbol to designate a function may be F, or/,

or the Greek letter, $. Thus, to indicate that i/ is a function of x, we

may employ the notation, y =. F(:c), or y =/(x'), ox y ^ 4'(a:)- The

second member may contain constants, as well as the variable, x. Thus,

3/ is a function of x in the foregoing equation, y = 2.x— 4, the con-

stants being 2 and — 4.

504. The most general form of an equation of the m*" degree be-

tween two variables, x and y, is,

cc" -f Bx"-' + Cx---^ + Dx"-^ + Ex"-^ + U = ;

in which B, C, D, &c., are functions of ?/.

B is supposed to be of the first degree in y, and of the form,

a -\-hy.

C is of the second degree in y, and of the form, c -\- cly -\- ey^.

D is of the third degree in y, and of the form, f -\- gy \- hy^ + 1y^-

E is of the fourth degree in y, &c. &c.

U is of the m}^ degree in y, and of the form, u -f my + +!/°7

and it does not contain x.

505. The equation is said to be complete when x enters into all the

terms but the last, y into all the terms but the first, and when, also,

the sum of the exponents of x and y in each term is equal to m.
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506. Eliminatioa between equations of a degree higher than the

first is usually effected by means of the greatest common divisor. This

method of elimination has already been explained (Art. 214), but we

propose to demonstrate the process more rigorously, in two ways,

1. Let A = 0, and B = 0, be the proposed equations containing

both X and y.

Now, if we knew beforehand a value m of y, that was common to

the two equations, A = 0, and B = 0, and substituted this value in

them, the new equations. A' = 0, and B' = 0, would contain only x

and constants. Now, if n be a value of a;, in the equation. A' = 0,

its first member must be divisible by x— n, and it is plain that the

given equations would not be simultaneous unless n would also satisfy

the equation, B' = (Art. 207). Hence, x— n must also be a divi-

sor of the equation, B' = 0. We see, then, that the hypothesis of a

common value in y results in the condition of a common divisor in x.

Conversely, if we can force the given equations to have a common
divisor in x, they must have a common value in y. It is upon this

principle that we seek for a common divisor between the first members

of the equations, A = 0, and B = 0, and continue the process until

we get a remainder freed from x. It is plain that, if we place this

remainder equal to zero, and substitute the value of y, found from it in

the last divisor, it will be an exact divisor, and will be the one sought.

From the foregoing reasoning it is evident, that if it be absurd to

place the remainder, freed from cr, eqvxal to zero, the given equations

are not simultaneous.

507. 2d. Let the successive quotients, in the process of dividing A
by B, B by the remainder, &c., be designated by Q, Q', &c., and the

successive remainders by R, R', &c. Then we will have.

A = BQ 4- R, (M)

B = RQ' + R', (N)

• R = R'Q" + R", (0)

&c. &c.

Now, since, by hypothesis, A = 0, and B = 0, equation (M) will

give R = 0. And, since B = 0, and R = 0, equation (N) will give

R' := 0. From this we see that we have a right to equate, with zero,

that remainder which is freed from cc, and contains only y.

508. The above series of equations show, moreover, that if the re-

mainder, which is freed from a-, and the preceding divisor be placed
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equal to zero, the system ofvalues so found will satisfy tlie given equations.

For, if E." be that remainder, and R' the preceding divisor, when E,",

and R' are equated with zero, equation (0) shows that R also = 0.

And R and R' being equal to zero, from (N) we get, B = 0. And,

since B = 0, and R = 0, equation (M) shows that we will also have

A=:0.
Hence, the values of ?/, found by placing the last remainder equal to

zero, may be substituted in the preceding divisor, in order to deduce

the corresponding values of x. The importance of this remark consists

in the fact, that the preceding divisor is of a lower degree than either

of the original equations, and, therefore, more readily solved.

509. The reasoning in Art. 507 proceeds upon the supposition that

the successive quotients, Q, Q', Q", are all finite, and then, of course,

the successive products, BQ, RQ', R'Q", &c., will all be zero, when

B = 0, R = 0, R' = 0, &c. But, if any of these quotients be frac-

tional in form, it may happen that the value of y, found from placing

the last remainder equal to zero, will reduce the denominator of the

preceding divisor to zero also. In that case, we would have the

product of zero by infinity, which is indeterminate.* Suppose, for

4
example, R = y— 1, Q = —^ . Then, A = BQ -f R becomes

A = ^(-A—\ + y— 1 : or, when R = 0, A = B^ = B oc ; orV—

y

(since A and B are zero), ^ oo, which may, or may not be, a true

equation.

510. To avoid the fractional form of quotient, it may sometimes be

necessary to multiply the dividend by some function of y, though this

multiplication may possibly introduce some foreign values into the

equation, as will be shown more fully hereafter.

511. We will now illustrate the foregoing principles by a few

examples.

* Let 00 :iz A, dividing both members by 0, we get oo == —- =: oo, a true

equation. And this will evidently be true when A = 1, 5, 10, 20, or anything

whatever.

42* 2a
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Let a;2 + J/''
— 8 = 0, and 2a;— 3y + 2 = 0.

4
4x2+4/—32 \2x— ^y + 2

4ic^+6.ry+4.x 2a: + (By— 2) = Quotient.

1st Kemainder = 2(3?/—2)a;+4/—32

2(3y—2)a:—9/+12^—

4

2d Remainder = 13^2—12^—28=0.

From which we get y = 2, and y" = — i| ; and these, when sub-

stituted in either of the given equations, give x' = 2, and x" = — 1|,

Let x^—/— 7 = 0, and a;— y— 1 = = 0. Combining, we

will get a;^ + (^ + \)x + (/ + y) + (^ + 1) for a quotient, and

/+ t/— 2 for a remainder.

The equation, formed by placing the remainder, freed from x, equal

to zero, is called i\i.e final equation. In this example, the final equa-

tion, y^ + y— 2 = 0, gives %f = 1, y" = — 2. And these values

for y, when substituted, give x' — 2, and x" = — 1.

Let x"— Syx^ + 3/a; — 5a;* -f lO^a; + 6a;—/— 5y^— Qy = 0,

and a;'— 6yx^ + Sy^x— x— 4/ -|- y = 0. Then the first quotient

is -|- 1, and first remainder (2y— 5)x^— 5y^x -\-7x + IQyx + By^

— 5/— 7y. Preparing the last divisor for division by multiplying by

(2y— 5)^, we have

x^—Syx^-^SiJ'x—x—iy^+T/

(2^-5)"

(2y-5)^x'-20y^x^+32y''x+im>/^x+lOy^a^-12byx'^-imy^x+20yx-25x-16y^+80y*-96y^-20y<^+25]/,

and this, when divided by (2y — 5)x^— by^x + 7x + lOyx + 3/
— 5/, gives as a quotient, (2y— 5)x— 5/ -f 15y— 7, and as a re-

mainder y*x— 10/a; + B5y^x— bOyx + 24a;— y^ + lOy*— 35^' +
50/— 24y. And, by factoring this remainder, we get (/— 10/ -f-

35/— bOy + 24)x— 3/(/— 10/ + 35/— 50y + 24) ; or, (a; —y)
(/— lOy^ + 35^2— 50?/ + 24). Rejecting the factor, x — y, as

leading to arbitrary values, we have the final equation, y*— lOy^ -\-

35/— 50y + 24 = 0. This equation, when solved by the process

of divisors, gives y' = 1, / = 2, /" = 3, and y'"^ = 4. And these,

when substituted, give x' = 3, x" = 5, x'" = 5, a;'^ = 7.

512. Two things are suggested by this example. 1st. May not the

multiplication by the factor, (2y— by, involving One of the unknown

quantities, have introduced foreign values ; that is, values which did

not enter the given equations ? 2d. x— y being a common factor to
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the remainder, is found to be also common to both the given equations.

How are such factors to be treated ? We will examine these subjects

separately.

513. 1st. In regard to foreign values, we have this simple test.

Place the multiplier equal to zero, find the value for y, and, from either

of the given equations, the corresponding values of .r ; if these values

be the same as some of those found from the final equation for y, with

the corresponding values of x, then the system of common values in

both X and y must be rejected. In the example, placing {2.y— 5)*

^ 0, we get i/ = I,
a value difi'eient from those before found. Hence,

the multiplier has not introduced a foreign value. But, if the multi-

plier, placed equal to zero, had given us, for example, y = \, with the

corresponding x = 3, then this system of values must be rejected.

514. How are factors to be treated which are common to both of the

first members of the given equations ? There may be three cases, but

all lead to arbitrary values. 1st. The common factor may be a func-

tion of X only, fix). 2d. It may be a function of y only, f{y). 3d.

It may be a function of both x and y, f(x, y).

When the common factor is /(x) only, x will have determinate

values, and y indeterminate. For, by placing f(x)= 0, we will get

true values for x ; but, when f(x)= 0, both equations will be satisfied,

whatever values y may have. Take the equations, (a -\- hx') (x?y +
2fx— ay) = 0, and (a -f hx) (Axhf— 2yx + my"-) = 0. Placing

a + Ja; ^ 0, we get x = , and both equations will be satisfied

when a + hx = 0, whatever may be the values of y. Hence, /(a;)=0

gives x determinate, and y indeterminate. In like manner, a common

factor, f(y), would give y determinate, and x indeterminate. In the

the third case, the common factor, /(x, y) = 0, will satisfy both equa-

tions ; but, since we have a single equation, f(x, y) = 0, containing

two unknown quantities, the values of both x and y must be indeter-

minate. Thus, take the equations, (2x— 4ty) (a? -}- ly— 5) = 0,

and (2x— 4y) (xy— 1x^ + bx^— 7/) = 0. It is plain that both

equations will be satisfied when 2x — 4y = ; but the equation,

2x— 4y = 0, will give indeterminate values for both x and y.

Hence, we conclude that, when the given equations contain a com-

mon factor, it must be divided out. For, a common factor, /(x), would

give determinate values for x, but indeterminate for y; a common

factor, f(y), would give determinate values for y, and indeterminate
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for x; and a common factor, /(a;, ^), would give x and y, both inde-

terminate.

515. Take the equations, (x— 1) (x^— 2xy -fa;— 2) = 0, and

(x^— XT/— 2) (x— 1) = 0. Suppressing x— 1, we have x^— 2xy

+ X— 2 = 0, and x^— xi/— 2 = 0, from which we get y = 1, and

x = 2.

Take the equations, (2y — 6) (xy + 5a-?/— y -f 1) = 0, and

(2i/— 6) (xy -f- 4y— 4) = 0. Suppressing 2y— 6, and combining

the resulting equations, we get IQy^— 53j/ -f 37 = for the final

equation. From which, ?/' = 1, y = ^l, x' = 0, x" = — ||.

Take the equations, (2x— 7y) (xi/— y -f 5a;^— 5a;) = 0, and

(2a;— 7y) (xi/ -f- 7a;— 7 — y) = 0. Removing the common foctor,

we get, after combination, 5a;^— 12 -f 7 = for the final equation.

From which, x' = |, x" = 1, and, by substitution, y' =— 7, and

516. When the first members of the given equations can be resolved

into factors of the first degree, or of a low degree, the elimination will

be greatly facilitated.

Take the equations, (x— 1) (?/x— 3) (a;^— 2xy') — 0, and (^x—
2a;) (x^— 2^) = 0.

These equations can, obviously, be satisfied when

X— 1=01 when a; — 1 = 01 when ya;— 3 = 01

and yx— 2a; = 01^ ''and x^— 2y = o|*^ -^ and i/x— 2x = o\^
''

when 7/x— 3=0 I when x^—2xy=0 I when x^—2xy=0
j

and x'—2y=0\^Knd x^— 2y=0 1^ \nd i/x— 2x=o\^ ^'

From (A) we get the system of values, ic = l, and y = 2.

" X = 1, and y = i.

" X = ^, and y = 2.

"
a; = VF, and x =: ^=z.

• ^6
" X = 1, and y = g.

« x' = 0, x" = 4, and / =

From (B)

From (C)

From (D)

From (E)

From (F)

y" = 2.

An artifice will sometimes enable us to decompose the first members

of the given equations into their respective factors.
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Take the equation, cc^— lyx, + 6x 4- 2/*— % + 5 ^ 0, (A), and

X* + 2^a; + / + 6a; + 6y + 5 = 0, (B). From (A), we get x^— lyx

+ / + 6x— 6j^ + 5 = 0, or (x— ^)^ + 6(x — ^) + 9 — 4 = ;

or (since tte first three terms constitute a perfect square), (x—y+3y
_4 = (x— y + 3/— (2y = (a;— y + 5)(x— y + l)(Art. 50).

From (B), we get (x + y^ + 6(x + ^) + 9— 4 = 0, or (x + y + 3)*

—4=(x+y+ 3)2— (2)^= (x+3/+ 5) (x+y+ 1) (Art. 50). Hence,

we have (x — y + 5) (x — y + 1) = 0, (A'), and (x + y + 5)

(a; + y + 1) = 0, (B'). And (A') and (B') will evidently be satisfied,

when X—^y-}-5= 0| when x—y+ 5= 0| when x

—

y-\-\=.^\

and x+y+ 5=0l'^ -^ and x+y+l=Or^ and x^y^b=^^'
and when x— y + 1 =
and X + y + 1 = (Q).

From (M) we get the system of values, x = — 5, and y = 0.

From (N) " " « x =— 3, and 3/ = + 2.

From (P) " « « X =— 3, and y = — 2.

From (Q) " " « x = — 1, and y = 0.

Take the equations, x*— 3yx— 3x + 2/ + 7y— 4 = 0, (A),

and x^— 4x + x^^— 4y = 0, (B).

From (A) we get (by making 2/ =l -| ^, and adding and sub-

tracting I),

(-l)"-^(-D+l-(l-l+?)=o
or, (-^-1- I) - (f

- |-)'-:(^-y-4) (a;-2y+l) (Art. 50).

From (B), we get x(x— 4) + y (x— 4) = (x + y) (a;— 4).

Hence, we have (x— y— 4) (x— 2y + 1) ^ 0.

and (x + 2/) (a;— 4) = 0.

From which we get the equations,

a;_y_4=0| a;—y— 4= 1 cc— 2y+l=0
and x+y= Ol^^^' x— 4= 0r^' x+ 2/= F^'
x-2y + l = 0|

X— 4 = 0P^
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From (R), we get the system of values, a; = 2, and y =— 2.

From (S), " " " x=i 4, and i/ = 0.

From (T), " " « x =— {, and ?/ = + \.

From (U), =z 4, and y = ^.

Take the equations, x^ + y^— 2yx— 4^ + 4a3 = 0, (A),

and a-y— y^— 6a;y + 5 + 4y = 0, (B).

From (A), we get (x— yf + 4 (x— y) = 0,

or, {x—y)(x—y+^) = (), (A').

And from (B), we get (by adding and subtracting 4),

xY— ^xy + 9 +4y—/— 4 = 0,

or, (xy-%r-(^y-2J= ^, or, {xy^y-h^ {xy-y-V,=.^, (B'),

(A') and (B') give the system of equations.

X— y=
and ccy + y— 5=
X— y + 4 = 0"

^y— y— 1 =

m^
x—y= Q

^y—y—l=0 (H),
x— 2/4-4= 01

xy-{-y— b=(i\
(I),

(K).

From (G), we get the values.

..^_, + 41,.^^=:zW2i,

y'
— l + v/21 1 — ^/21

From (H), we get the values,

— --
2 J'

l+v/5

x/5

2/" =
2 _^

1 — ^/5

From (K), we get the values.

5+^/29 ,,_— 5 — -v/29
^ - 2^3;

,
3 — ^29

y =+ r,
—

.

2 _'
3 +^/29
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517. One of the equations only may be capable of decomposition

into factors.

The equations may be of the form, A = 0, and BD = 0. We will

then have two systems of values j one resulting from A= and

B = 0, the other from A= and D = 0.

Take the equations,

xy— Ixy— 20x = 0, (A), and {xy— 5a; + 3) (x— 2) = 0, (BD).

We get the system of equations,

xY— Ixy— 20x = 0, (A), and cry— 5x + 3 = 0, (B).

From which, x'= 3, and x" = |, y= 4, and y" :=— |.

(A) and (D) give xhf— Ixy— 20x = 0, and re— 2 = 0.

, . , , ^ , 7-^^/209 ,, i— ^lm
From which we get x =z 1, y = , y = -r .

518. If any of the successive remainders be capable of decompo-

sition into factors, which are functions of x or y, these factors may be

placed, separately, equal to zero, and the deduced values of x or y sub-

stituted in the preceding divisor.

For, let B, be one of the dividends, R' the divisor, Q the quotient,

and/(x) X f{y) the remainder.

Then, |, = Q +-^/^l or R = R'Q + f{x) x /{y).

And this equation will be satisfied when R' =: and /(x) = 0, or

when R' = &nd/(y) = 0.

Take the equations, yx'^ +y^x^— x^— y^x -^ yx -{- ]/— 1=0, (R).

and x^— y + 1=0, (R').

Dividing R by R', we will geflfe remainder, (x^ + 1) (y^— 1)

Placing a;* -f- 1 = 0, we get x= ± -y— 1, and this, substituted in

(R), gives 2/= 0. Placing y^— 1 = 0, we get y = =t 1, and these

values, when substituted, give x'= 0, and x"= db y/— 2.

Hence, we have the system of values,

a/=+ v/— 1| x"=—^— 1
1

x'" =z
I

a;'^ = y/—2\ x^ z=—^A^
2/= 0| y"= o\y"'= l\ y- =— 1| r =— 1

All of which will satisfy the given equations.
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519. When it is necessary to multiply (A) by either a function of

* or 2/ to make it divisible by (B), we can tell whether the multiplier

has introduced foreign values, by combining it, placed equal to zero,

with B = 0. If any of the values thus found are the same as those

resulting from the combination of the given equations, we must reject

these common values from the solutions of the given equations.

For, Jet A= 0, and B = ; and suppose that (A) will not be divi-

sible by B until it has been multiplied by /(a;). Then we will have

A(/x)= 0, and B^ 0, which can be satisfied when A=0, and B =0;
or, when f(x) = and B = 0.

Now, it is plain that, if the combination of the new equation,

A.f(w) = 0, with B = 0, gives, among its system of values, the same

as given by /(a;) = 0, and B = 0, we must reject the common values

as having been introduced by the multiplication of/(x).

Take the equations, x^y— 2xy -{- x^= 0, (A), and x^y— 2x^ -\-

x = 0, (B).

Multiplying (A) by x^, to prepare for division, we get for the final

equation, a;^(x' ^• 2x^— 5x + 2) :^ 0. From which we get, x= 0,

, ^ „ —3+VT7 ,„ —3—^17 „, -.

X = 1, X = , X = ^ . The corresponding

1 . / V 6v/T7-26 .„ _(26 + 6^T7)
values of y are, v = ti, v = — =» ¥ =—^^ =-^

"' ^ 38— 10^17 38 + 10^17
(M).

Now, placing /(x) = 0, and B = ; or, x" = 0, and cc'— 2x^ +
x = 0, we get x=zO, and y= § ; and, since these values are the same

as the first of those, marked (M), we must reject them from (M), and

leave but three values for x, and three for y.

520. If A be exactly divisible by B, the values of x and y will be

indeterminate.

For, then, ^ =Q,; and, since A = 0, and B = 0, we will have
B

I]
= Q, or = OQ . (P). Now, it k plain that Q may be /(cc), or

f{y),oxf(x,ij). But, equation (P) will be satisfied, whatever may

be the form of Q, and whatever may be the values of x or y.

Take the equations,

a;«_ ^x^y_ 2^'' 4- Zy^x" + 6xV— 2/'x— Qy^x + 2f= 0,

and x'— 2xy + y' = 0.

We get as a quotient, x^— xy— 2x + 2y, and a remainder zero,

and any value whatever of x, with the corresponding or deduced value

of y, will satisfy both equations.
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Remark.

The case exhibited in 520, differs only from that in 514 in this

respect, there is a common factor to the two equations in both instances,

but 520 does not manifest that factor.

The indeterminate nature of the given equations, when the final

equation in y is zero in both members, may also be shown by retaining

the trace of y. For, when we place the zero remainder equal to zero,

we have Oy= 0, or 2/ ^ %

521. When the final equation reduces to a constant, the value of y
will be infinite, and the given equations will be contradictory.

For, then we will have 0^/ = A, constant ; or ^ = 00, the symbol of

absurdity.

Hence, the combination of the given equations has led to an absurd-

ity, and, therefore, these equations must be contradictory.

Take the equations, y^— 0?— Sx* + 9— Zx = 0,

and y— x— 1=0.

Combining, we will have, for the final equation, 10= 0; or, retaining

the trace of y, 10 -f Oy = 0, or y =— 'gO = 00,

The given equations are not simultaneous.

GENERAL EXAMPLES.

|/_2xy—4x+ a;2= 0,

I y + a;— 4 = 0.

Am. a/ =4, a;" = 1 ; y = 0, y = 3.

\y''— 1xy— ^x— x^= 0,

I

y2_2xy— 5x— 2a;« + 2 = 0. _
Am. iK= 1, or — 2, y= 1 ± v/5, or — 2 ±x/— 4.

\yx-— Zfx^ + 3yV— Ay*x^ + bifx— 2y^= Q

I

a;''— 3yx + 2/ = 0.

Ans. X and y indeterminate.

^S— 2yx' + x'-\-x^— 2yx+f= 0,

\ x"— 2yx + 1 = 0.

Ans. x = =i= 1; or dr^— 3, 2/= =t L
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5.

ELIMINATION BETWEEN TWO EQUATIONS

9.

10.

11.

12.

x^— 2i/x^ ^x" + x"— 2yx + 1=0,
a;2_ 22/^ + 1 = 0.

Ans. x = ^, y=%.

y""— 2xy -{ x^— 2y— 1 z= 0,

y^— 2xt/ + x'^ + x = 0.

Tins. x =— 1, or — ^ ; 1/ = 0, OT — |.

2/2_ 2x1/ + 2x^— 2y + 4: = 0,

2/"— 4xy + 7a^— 22/2— 5 = 0.

y^— ^xy + 5x' + 2cc + 1 = 0,

y— 2a; = 0.

Ans. Values imaginary.

cc = — l,y = — 2.

3^2 + CC2/— 2a;2 + 3x— 1 = 0,

y'^— X^= 0.

Ans. 35 = J, or 1, or I, and y= f, or — 1, or — J.

(ya;-l)(x-2)(y_4) = 0,

(x + 2)(2/x-a;).(a>— 3) = 0.

J.ns.

Values of x.
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13.
y-^' + 7 = 0, (A)

/_x^ + 3 = 0. (B)

Ans. a; = 2, and y = 1.

After the first division, multiply (B) by (cc^— 3)^, we will get for

the final equation, Qx"— Ux^— 21a^ + 7Q = 0. The only rational

value in this equation is a; = 2.

14.
y-

15 = 0,

7 = 0.

Ans. x = l, and y = 2.

Final equation, (x* + 15)="— {x" + 7)* = 0.

Required the values and the final equation belonging to

15. I

^6_a;s_2101 = 0,

1
2/'— X*— 369 = 0.

THE END.




